Skip to main content

Regulation of Airway Smooth Muscle Contraction by Ca2+ Signaling: Physiology Revealed by Microscopy Studies of Lung Slices

  • Chapter
  • First Online:
  • 1042 Accesses

Abstract

Signaling…?>An examination of the physiology of airway smooth muscle cells (SMCs) in lung slices from mice, rats, and humans with laser scanning microscopy reveals that agonist-induced airway SMC contraction is driven by Ca2+ oscillations. An increase in the frequency of Ca2+ oscillations correlates with an increase in airway contraction. In addition, contractile agonists simultaneously increase airway SMC Ca2+ sensitivity to enhance the action of the Ca2+ oscillations. These Ca2+ oscillations are primarily mediated by the activity of the inositol trisphosphate receptor (IP3R). Although airway SMCs contract in response to membrane depolarization, Ca2+ influx via voltage-gated Ca2+ channels does not appear to have a major role in agonist-induced airway SMC contraction. Airway relaxation induced by β2-adrenergic receptor agonists involves both a reduction in the Ca2+ oscillation frequency and Ca2+ sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. An SS, Bai TR, Bates JH, Black JL, Brown RH, Brusasco V, Chitano P, Deng L, Dowell M, Eidelman DH et al. 2007. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 29: 834–860.

    Article  PubMed  CAS  Google Scholar 

  2. Bai Y, Edelmann M, Sanderson MJ 2009. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca2+ signaling of airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 297: L347–361.

    Article  PubMed  CAS  Google Scholar 

  3. Bai Y, Sanderson MJ. 2006a. Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP3 receptor. Respir Res 7: 34.

    Article  PubMed  Google Scholar 

  4. Bai Y, Sanderson MJ. 2006b. Modulation of the Ca2+ sensitivity of airway smooth muscle cells in murine lung slices. Am J Physiol Lung Cell Mol Physiol 291: L208–221.

    Article  PubMed  CAS  Google Scholar 

  5. Bai Y, Sanderson MJ. 2009. The contribution of Ca2+ signaling and Ca2+ sensitivity to the regulation of airway smooth muscle contraction is different in rats and mice. Am J Physiol Lung Cell Mol Physiol 296: L947–958.

    Article  PubMed  CAS  Google Scholar 

  6. Bai Y, Zhang M, Sanderson MJ. 2007. Contractility and Ca2+ signaling of smooth muscle cells in different generations of mouse airways. Am J Respir Cell Mol Biol 36: 122–130.

    Article  PubMed  CAS  Google Scholar 

  7. Bao R, Lifshitz LM, Tuft RA, Bellve K, Fogarty KE, ZhuGe R. 2008. A close association of RyRs with highly dense clusters of Ca2+-activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle. J Gen Physiol 132: 145–160.

    Article  PubMed  CAS  Google Scholar 

  8. Bergner A, Kellner J, Silva AK, Gamarra F, Huber RM. 2006. Ca2+-signaling in airway smooth muscle cells is altered in T-bet knock-out mice. Respir Res 7: 33.

    Article  PubMed  Google Scholar 

  9. Bergner A, Sanderson MJ. 2002a. Acetylcholine-induced Calcium Signaling and Contraction of Airway Smooth Muscle Cells in Lung Slices. J Gen Physiol 119: 187–198.

    Article  PubMed  CAS  Google Scholar 

  10. Bergner A, Sanderson MJ. 2002b. ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices. Am J Physiol Lung Cell Mol Physiol 283: L1271–1279.

    PubMed  CAS  Google Scholar 

  11. Bergner A, Sanderson MJ. 2003. Airway contractility and smooth muscle Ca2+ signaling in lung slices from different mouse strains. J Appl Physiol 95: 1325–1332; discussion 1314.

    PubMed  CAS  Google Scholar 

  12. Berridge MJ. 1997. The AM and FM of calcium signalling [news; comment]. Nature 386: 759–760.

    Article  PubMed  CAS  Google Scholar 

  13. Berridge MJ. 2008. Smooth muscle cell calcium activation mechanisms. J Physiol 586: 5047–5061.

    Article  PubMed  CAS  Google Scholar 

  14. Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4: 517–529.

    Article  PubMed  CAS  Google Scholar 

  15. Cahalan MD. 2009. STIMulating store-operated Ca2+ entry. Nat Cell Biol 11: 669–677.

    Article  PubMed  CAS  Google Scholar 

  16. Dai JM, Kuo KH, Leo JM, Pare PD, van Breemen C, Lee CH. 2007. Acetylcholine-induced asynchronous calcium waves in intact human bronchial muscle bundle. Am J Respir Cell Mol Biol 36: 600–608.

    Article  PubMed  CAS  Google Scholar 

  17. Dai JM, Kuo KH, Leo JM, van Breemen C, Lee CH. 2006. Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am J Physiol Lung Cell Mol Physiol 290: L459–469.

    Article  PubMed  CAS  Google Scholar 

  18. Delmotte P, Ressmeyer AR, Bai Y, Sanderson MJ. 2010. Mechanisms of airway smooth muscle relaxation induced by beta2-adrenergic agonists. Front Biosci 15: 750–764.

    Article  CAS  Google Scholar 

  19. Delmotte P, Sanderson MJ. 2006. Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am J Respir Cell Mol Biol 35: 110–117.

    Article  PubMed  CAS  Google Scholar 

  20. Delmotte P, Sanderson MJ. 2008. Effects of albuterol isomers on the contraction and Ca2+ signaling of small airways in mouse lung slices. Am J Respir Cell Mol Biol 38: 524–531.

    Article  PubMed  CAS  Google Scholar 

  21. Delmotte P, Sanderson MJ. 2010. Effects of formoterol on contraction and Ca2+ signaling of mouse airway smooth muscle cells. Am J Respir Cell Mol Biol 42: 373–381.

    Article  PubMed  CAS  Google Scholar 

  22. Fill M, Copello JA. 2002. Ryanodine receptor calcium release channels. Physiol Rev 82: 893–922.

    PubMed  CAS  Google Scholar 

  23. Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, Ackerman K, Haley K, Galle PR, Szabo SJ et al. 2002. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295: 336–338.

    Article  PubMed  CAS  Google Scholar 

  24. Kannan MS, Prakash YS, Brenner T, Mickelson JR, Sieck GC. 1997. Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle. Am J Physiol 272: L659–664.

    PubMed  CAS  Google Scholar 

  25. Kong H, Jones PP, Koop A, Zhang L, Duff HJ, Chen SR. 2008. Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem J 414: 441–452.

    Article  PubMed  CAS  Google Scholar 

  26. Kotlikoff MI, Kamm KE. 1996. Molecular mechanisms of beta-adrenergic relaxation of airway smooth muscle. Annu Rev Physiol 58: 115–141.

    Article  PubMed  CAS  Google Scholar 

  27. Lauzon AM, Bates JH, Donovan G, Tawhai M, Sneyd J, Sanderson MJ. 2012. A multi-scale approach to airway hyperresponsiveness: from molecule to organ. Front Physiol 3: 191.

    Article  PubMed  Google Scholar 

  28. Levitt RC, Mitzner W. 1989. Autosomal recessive inheritance of airway hyperreactivity to 5- hydroxytryptamine. J Appl Physiol 67: 1125–1132.

    PubMed  CAS  Google Scholar 

  29. Pabelick CM, Sieck GC, Prakash YS. 2001. Invited Review: Significance of spatial and temporal heterogeneity of calcium transients in smooth muscle. J Appl Physiol 91: 488–496.

    PubMed  CAS  Google Scholar 

  30. Peel SE, Liu B, Hall IP. 2008. ORAI and store-operated calcium influx in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38: 744–749.

    Article  PubMed  CAS  Google Scholar 

  31. Penn RB, Benovic JL. 2008. Regulation of heterotrimeric G protein signaling in airway smooth muscle. Proc Am Thorac Soc 5: 47–57.

    Article  PubMed  CAS  Google Scholar 

  32. Perez-Zoghbi JF, Bai Y, Sanderson MJ. 2010. Nitric oxide induces airway smooth muscle cell relaxation by decreasing the frequency of agonist-induced Ca2+ oscillations. J Gen Physiol 135: 247–259.

    Article  PubMed  CAS  Google Scholar 

  33. Perez-Zoghbi JF, Karner C, Ito S, Shepherd M, Alrashdan Y, Sanderson MJ. 2008. Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm Pharmacol Ther.

    Google Scholar 

  34. Perez-Zoghbi JF, Sanderson MJ. 2007. Endothelin-induced contraction of bronchiole and pulmonary arteriole smooth muscle cells is regulated by intracellular Ca2+ oscillations and Ca2+ sensitization. Am J Physiol Lung Cell Mol Physiol 293: L1000–1011.

    Article  PubMed  CAS  Google Scholar 

  35. Perez JF, Sanderson MJ. 2005a. The contraction of smooth muscle cells of intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced by 5-HT and KCl. J Gen Physiol 125: 555–567.

    Article  PubMed  CAS  Google Scholar 

  36. Perez JF, Sanderson MJ. 2005b. The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J Gen Physiol 125: 535–553.

    Article  PubMed  CAS  Google Scholar 

  37. Prakash YS, Kannan MS, Walseth TF, Sieck GC. 1998. Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am J Physiol 274: C1653–1660.

    PubMed  CAS  Google Scholar 

  38. Prakash YS, Pabelick CM, Kannan MS, Sieck GC. 2000. Spatial and temporal aspects of ACh-induced [Ca2+]i oscillations in porcine tracheal smooth muscle. Cell Calcium 27: 153–162.

    Article  PubMed  CAS  Google Scholar 

  39. Ressmeyer AR, Bai Y, Delmotte P, Uy KF, Thistlethwaite P, Fraire A, Sato O, Ikebe M, Sanderson MJ. 2010. Human airway contraction and formoterol-induced relaxation is determined by Ca2+ oscillations and Ca2+ sensitivity. Am J Respir Cell Mol Biol 43: 179–191.

    Article  PubMed  CAS  Google Scholar 

  40. Sanderson MJ. 2004. Acquisition of multiple real-time images for laser scanning microscopy. Microscopy and analysis 18: 17–23.

    Google Scholar 

  41. Sanderson MJ. 2011. Exploring lung physiology in health and disease with lung slices. Pulmonary Pharmacology and Therapeutics : In Press.

    Google Scholar 

  42. Sanderson MJ, Delmotte P, Bai Y, Perez-Zogbhi JF. 2008. Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc Am Thorac Soc 5: 23–31.

    Article  PubMed  CAS  Google Scholar 

  43. Somlyo AP, Somlyo AV. 2003. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83: 1325–1358.

    PubMed  CAS  Google Scholar 

  44. Wang I, Politi AZ, Tania N, Bai Y, Sanderson MJ, Sneyd J. 2008. A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys J 94: 2053–2064.

    Article  PubMed  CAS  Google Scholar 

  45. Wang IY, Bai Y, Sanderson MJ, Sneyd J. 2010. A mathematical analysis of agonist- and KCl-induced Ca2+ oscillations in mouse airway smooth muscle cells. Biophys J 98: 1170–1181.

    Article  PubMed  CAS  Google Scholar 

  46. ZhuGe R, Sims SM, Tuft RA, Fogarty KE, Walsh JV, Jr. 1998. Ca2+ sparks activate K+ and Cl- channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. J Physiol (Lond) 513: 711–718.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant HL 103405. I would also like to thank Albrecht Bergner, Jose Perez-Zogbhi, Yan Bai, Philippe Delmotte, and Anna Ressmeyer, who conducted most of the experimental work addressed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sanderson, M.J. (2014). Regulation of Airway Smooth Muscle Contraction by Ca2+ Signaling: Physiology Revealed by Microscopy Studies of Lung Slices. In: Wang, YX. (eds) Calcium Signaling In Airway Smooth Muscle Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-01312-1_7

Download citation

Publish with us

Policies and ethics