Skip to main content

Calcium-Activated Chloride Channels

  • Chapter
  • First Online:
Calcium Signaling In Airway Smooth Muscle Cells

Abstract

Emerging functional evidence demonstrates the importance of membrane potential in the regulation of many intracellular signaling processes. The efflux of chloride through the plasma membrane has been identified as a major contributor to plasma membrane depolarization in airway smooth muscle. Early studies demonstrated that calcium arising from intracellular sources and released by ryanodine or IP3 receptor activation on the sarcoplasmic-reticulum-induced plasma membrane chloride currents. Moreover, external calcium entry through voltage-dependent calcium channels was shown to augment calcium-activated chloride currents. One of the earliest studies in this area suggested a role for chloride influencing uptake and release of calcium from the sarcoplasmic reticulum in addition to chloride flux’s effect on plasma membrane electrical potential. Recently the elusive proteins responsible for calcium-activated chloride currents in many cells (TMEM16/anoctamin family) were cloned, which has renewed interest in the field of calcium-activated chloride channels (CaCCs). Anoctamin 1 has been identified on the apical side of airway epithelium, is critical to fluid secretion, and has been associated with increased mucin secretion in asthmatics. Anoctamin 1 is critical to the development of the trachea as global knockout mice exhibit severe tracheomalacia. Anoctamin 1 has been immunochemically localized to airway smooth muscle and human bronchi were shown to contract less effectively in the presence of benzbromarone, an antagonist of these channels. Studies of the TMEM16/anoctamin family of CaCCs are revolutionizing the understanding of calcium-activated chloride currents in many cell types, and emerging evidence suggests that this channel also contributes to the regulation of airway smooth muscle tone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janssen LJ. 2002; Ionic mechanisms and Ca(2+) regulation in airway smooth muscle contraction: do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 282:L1161–L1178.

    PubMed  CAS  Google Scholar 

  2. Janssen LJ. 2012; Airway smooth muscle electrophysiology in a state of flux? Am J Physiol Lung Cell Mol Physiol 302:L730–L732.

    PubMed  CAS  Google Scholar 

  3. Kotlikoff MI, Kume H, Tomasic M. 1992; Muscarinic regulation of membrane ion channels in airway smooth muscle cells. Biochem Pharmacol 43:5–10.

    PubMed  CAS  Google Scholar 

  4. Gupta S, Meena HS, Chopra R, Bidani R. 1993; Effect of aerosolised verapamil and nifedipine in bronchial asthma. J Assoc Physicians India 41:425–427.

    PubMed  CAS  Google Scholar 

  5. Talwar D, Jindal SK. 1993; Effect of calcium channel antagonists on cholinergic bronchial responsiveness in asthma. J Assoc Physicians India 41:279–280.

    PubMed  CAS  Google Scholar 

  6. Cerrina J, Denjean A, Alexander G, Lockhart A, Duroux A. 1981; Inhibition of exercise-induced asthma by a calcium antagonist, nifedipine. Am Rev Respir Dis 123:156–160.

    PubMed  CAS  Google Scholar 

  7. Patel KR. 1981; The effect of verapamil on histamine and methacholine-induced bronchoconstriction. Clin Allergy 11:441–447.

    PubMed  CAS  Google Scholar 

  8. Patel KR. 1981; Calcium antagonists in exercise-induced asthma. Br Med J (Clin Res Ed) 282:932–933.

    CAS  Google Scholar 

  9. Barnes PJ, Wilson NM, Brown MJ. 1981; A calcium antagonist, nifedipine, modifies exercise-induced asthma. Thorax 36:726–730.

    PubMed  CAS  Google Scholar 

  10. Corris PA, Nariman S, Gibson GJ. 1983; Nifedipine in the prevention of asthma induced by exercise and histamine. Am Rev Respir Dis 128:991–992.

    PubMed  CAS  Google Scholar 

  11. Drazen JM, Fanta CH, Lacouture PG. 1983; Effect of nifedipine on constriction of human tracheal strips in vitro. Br J Pharmacol 78:687–691.

    PubMed  CAS  Google Scholar 

  12. Hirota S, Trimble N, Pertens E, Janssen LJ. 2006; Intracellular Cl- fluxes play a novel role in Ca2+ handling in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1146–L1153.

    PubMed  CAS  Google Scholar 

  13. Janssen LJ, Sims SM. 1995; Ca(2+)-dependent Cl- current in canine tracheal smooth muscle cells. Am J Physiol 269:C163–C169.

    PubMed  CAS  Google Scholar 

  14. Fanta CH. 1985; Calcium-channel blockers in prophylaxis and treatment of asthma. Am J Cardiol 55:202B–209B.

    PubMed  CAS  Google Scholar 

  15. Janssen LJ. 1997; T-type and L-type Ca2+ currents in canine bronchial smooth muscle: characterization and physiological roles. Am J Physiol 272:C1757–C1765.

    PubMed  CAS  Google Scholar 

  16. Janssen LJ, Sims SM. 1992; Acetylcholine activates non-selective cation and chloride conductances in canine and guinea-pig tracheal myocytes. J Physiol 453:197–218.

    PubMed  CAS  Google Scholar 

  17. Hirota S, Helli P, Janssen LJ. 2007; Ionic mechanisms and Ca2+ handling in airway smooth muscle. Eur Respir J 30:114–133.

    PubMed  CAS  Google Scholar 

  18. Kume H, Hall IP, Washabau RJ, Takagi K, Kotlikoff MI. 1994; Beta-adrenergic agonists regulate KCa channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. J Clin Invest 93:371–379.

    PubMed  CAS  Google Scholar 

  19. Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP. 2004; Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol 30:145–154.

    PubMed  CAS  Google Scholar 

  20. Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, Phelps PT, Egan RW, Hey JA. 2004; Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287:L272–L278.

    PubMed  CAS  Google Scholar 

  21. Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB. 2010; Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16:1299–1304.

    PubMed  CAS  Google Scholar 

  22. Billups D, Billups B, Challiss RA, Nahorski SR. 2006; Modulation of Gq-protein-coupled inositol trisphosphate and Ca2+ signaling by the membrane potential. J Neurosci 26:9983–9995.

    PubMed  CAS  Google Scholar 

  23. Ben-Chaim Y, Chanda B, Dascal N, Bezanilla F, Parnas I, Parnas H. 2006; Movement of ‘gating charge’ is coupled to ligand binding in a G-protein-coupled receptor. Nature 444:106–109.

    PubMed  CAS  Google Scholar 

  24. Mahaut-Smith MP, Martinez-Pinna J, Gurung IS. 2008; A role for membrane potential in regulating GPCRs? Trends Pharmacol Sci 29:421–429.

    PubMed  CAS  Google Scholar 

  25. Yamakage M, Chen X, Tsujiguchi N, Kamada Y, Namiki A. 2001; Different inhibitory effects of volatile anesthetics on T- and L-type voltage-dependent Ca2+ channels in porcine tracheal and bronchial smooth muscles. Anesthesiology 94:683–693.

    PubMed  CAS  Google Scholar 

  26. Gallos G, Gleason NR, Zhang Y, Pak SW, Sonett JR, Yang J, Emala CW. 2008; Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol mediated relaxation. Am J Physiol Lung Cell Mol Physiol 295:L1040–L1047.

    PubMed  CAS  Google Scholar 

  27. Yim PD, Gallos G, Xu D, Zhang Y, Emala CW. 2011; Novel expression of a functional glycine receptor chloride channel that attenuates contraction in airway smooth muscle. FASEB J. 25:1706–1717

    PubMed  CAS  Google Scholar 

  28. Zhang GH, Melvin JE. 1993; Membrane potential regulates Ca2+ uptake and inositol phosphate generation in rat sublingual mucous acini. Cell Calcium 14:551–562.

    PubMed  CAS  Google Scholar 

  29. Gromada J, Dissing S. 1996; Membrane potential and cytosolic free calcium levels modulate acetylcholine-induced inositol phosphate production in insulin-secreting BTC3 cells. Biochim Biophys Acta 1310:145–148.

    PubMed  Google Scholar 

  30. Liu C, Zuo J, Pertens E, Helli PB, Janssen LJ. 2005; Regulation of Rho/ROCK signaling in airway smooth muscle by membrane potential and [Ca2+]i. Am J Physiol Lung Cell Mol Physiol 289:L574–L582.

    PubMed  CAS  Google Scholar 

  31. Liu C, Zuo J, Janssen LJ. 2006; Regulation of airway smooth muscle RhoA/ROCK activities by cholinergic and bronchodilator stimuli. Eur Respir J 28:703–711.

    PubMed  Google Scholar 

  32. Jentsch TJ, Friedrich T, Schriever A, Yamada H. 1999; The CLC chloride channel family. Pflugers Arch 437:783–795.

    PubMed  CAS  Google Scholar 

  33. Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J. 2003; Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 278:41114–41125.

    PubMed  CAS  Google Scholar 

  34. Winpenny JP, Gray MA. 2012; The anoctamin (TMEM16) gene family: calcium-activated chloride channels come of age. Exp Physiol 97:175–176.

    PubMed  Google Scholar 

  35. Duran C, Thompson CH, Xiao Q, Hartzell HC. 2010; Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72:95–121.

    PubMed  CAS  Google Scholar 

  36. Kunzelmann K, Kongsuphol P, Aldehni F, Tian Y, Ousingsawat J, Warth R, Schreiber R. 2009; Bestrophin and TMEM16-Ca(2+) activated Cl(−) channels with different functions. Cell Calcium 46:233–241.

    PubMed  CAS  Google Scholar 

  37. Mundhenk L, Alfalah M, Elble RC, Pauli BU, Naim HY, Gruber AD. 2006; Both cleavage products of the mCLCA3 protein are secreted soluble proteins. J Biol Chem 281:30072–30080.

    PubMed  CAS  Google Scholar 

  38. Miledi R. 1982; A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc Lond B Biol Sci. 215:491–4977.

    PubMed  CAS  Google Scholar 

  39. Miledi R, Parker I. 1984; Chloride current induced by injection of calcium into Xenopus oocytes. J Physiol. 357:173–183.

    PubMed  CAS  Google Scholar 

  40. Barish ME. 1983; A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol. 342:309–325.

    PubMed  CAS  Google Scholar 

  41. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U. 2008; TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215.

    PubMed  CAS  Google Scholar 

  42. Hartzell C, Putzier I, Arreola J. 2005; Calcium-activated chloride channels. Annu Rev Physiol 67:719–758.

    PubMed  CAS  Google Scholar 

  43. Qu Z, Hartzell HC. 2000; Anion permeation in Ca(2+)-activated Cl(−) channels. J Gen Physiol 116:825–844.

    PubMed  CAS  Google Scholar 

  44. Pusch M. 2004; Ca(2+)-activated chloride channels go molecular. J Gen Physiol 123:323–325.

    PubMed  CAS  Google Scholar 

  45. Zhou Y, Shapiro M, Dong Q, Louahed J, Weiss C, Wan S, Chen Q, Dragwa C, Savio D, Huang M, Fuller C, Tomer Y, Nicolaides NC, McLane M, Levitt RC. 2002; A calcium-activated chloride channel blocker inhibits goblet cell metaplasia and mucus overproduction. Novartis Found Symp 248:150–165.

    PubMed  CAS  Google Scholar 

  46. Collier ML, Levesque PC, Kenyon JL, Hume JR. 1996; Unitary Cl− channels activated by cytoplasmic Ca2+ in canine ventricular myocytes. Circ Res 78:936–944.

    PubMed  CAS  Google Scholar 

  47. Ling BN, Seal EE, Eaton DC. 1993; Regulation of mesangial cell ion channels by insulin and angiotensin II. Possible role in diabetic glomerular hyperfiltration. J Clin Invest 92:2141–2151.

    PubMed  CAS  Google Scholar 

  48. Nilius B, Prenen J, Szucs G, Wei L, Tanzi F, Voets T, Droogmans G. 1997; Calcium-activated chloride channels in bovine pulmonary artery endothelial cells. J Physiol 498 (Pt 2):381–396.

    PubMed  CAS  Google Scholar 

  49. Martin DK. 1993; Small conductance chloride channels in acinar cells from the rat mandibular salivary gland are directly controlled by a G-protein. Biochem Biophys Res Commun 192:1266–1273.

    PubMed  CAS  Google Scholar 

  50. Koumi S, Sato R, Aramaki T. 1994; Characterization of the calcium-activated chloride channel in isolated guinea-pig hepatocytes. J Gen Physiol 104:357–373.

    PubMed  CAS  Google Scholar 

  51. Arreola J, Melvin JE, Begenisich T. 1998; Differences in regulation of Ca(2+)-activated Cl- channels in colonic and parotid secretory cells. Am J Physiol 274:C161–C166.

    PubMed  CAS  Google Scholar 

  52. Park MK, Lomax RB, Tepikin AV, Petersen OH. 2001; Local uncaging of caged Ca(2+) reveals distribution of Ca(2+)-activated Cl(−) channels in pancreatic acinar cells. Proc Natl Acad Sci U S A 98:10948–10953.

    PubMed  CAS  Google Scholar 

  53. Wang YX, Kotlikoff MI. 1997; Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A 94:14918–14923.

    PubMed  CAS  Google Scholar 

  54. Wagner JA, Cozens AL, Schulman H, Gruenert DC, Stryer L, Gardner P. 1991; Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase. Nature 349:793–796.

    PubMed  CAS  Google Scholar 

  55. Chao AC, Kouyama K, Heist EK, Dong YJ, Gardner P. 1995; Calcium- and CaMKII-dependent chloride secretion induced by the microsomal Ca(2+)-ATPase inhibitor 2,5-di-(tert-butyl)-1,4-hydroquinone in cystic fibrosis pancreatic epithelial cells. J Clin Invest 96:1794–1801.

    PubMed  CAS  Google Scholar 

  56. Schlenker T, Fitz JG. 1996; Ca(2+)-activated C1- channels in a human biliary cell line: regulation by Ca2+/calmodulin-dependent protein kinase. Am J Physiol 271:G304–G310.

    PubMed  CAS  Google Scholar 

  57. Nishimoto I, Wagner JA, Schulman H, Gardner P. 1991; Regulation of Cl- channels by multifunctional CaM kinase. Neuron 6:547–555.

    PubMed  CAS  Google Scholar 

  58. Holevinsky KO, Jow F, Nelson DJ. 1994; Elevation in intracellular calcium activates both chloride and proton currents in human macrophages. J Membr Biol 140:13–30.

    PubMed  CAS  Google Scholar 

  59. Xie W, Kaetzel MA, Bruzik KS, Dedman JR, Shears SB, Nelson DJ. 1996; Inositol 3,4,5,6-tetrakisphosphate inhibits the calmodulin-dependent protein kinase II-activated chloride conductance in T84 colonic epithelial cells. J Biol Chem 271:14092–14097.

    PubMed  CAS  Google Scholar 

  60. Xie W, Solomons KR, Freeman S, Kaetzel MA, Bruzik KS, Nelson DJ, Shears SB. 1998; Regulation of Ca2+−dependent Cl- conductance in a human colonic epithelial cell line (T84): cross-talk between Ins(3,4,5,6)P4 and protein phosphatases. J Physiol 510 (Pt 3):661–673.

    PubMed  CAS  Google Scholar 

  61. Ferrera L, Caputo A, Ubby I, Bussani E, Zegarra-Moran O, Ravazzolo R, Pagani F, Galietta LJ. 2009; Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 284:33360–33368.

    PubMed  CAS  Google Scholar 

  62. Large WA, Wang Q. 1996; Characteristics and physiological role of the Ca(2+)-activated Cl− conductance in smooth muscle. Am J Physiol 271:C435–C454.

    PubMed  CAS  Google Scholar 

  63. Liu C, Tazzeo T, Lippton H, Janssen LJ. 2007; Role of tyrosine phosphorylation in U46619-induced vasoconstriction of pulmonary vasculature and its modulation by genistein, daidzein, and equol. J Cardiovasc Pharmacol 50:441–448.

    PubMed  CAS  Google Scholar 

  64. Wang YX, Kotlikoff MI. 1997; Muscarinic signaling pathway for calcium release and calcium-activated chloride current in smooth muscle. Am J Physiol 273:C509–C519.

    PubMed  CAS  Google Scholar 

  65. Kotlikoff MI, Wang YX. 1998; Calcium release and calcium-activated chloride channels in airway smooth muscle cells. Am J Respir Crit Care Med 158:S109–S114.

    PubMed  CAS  Google Scholar 

  66. Liu X, Farley JM. 1996; Acetylcholine-induced chloride current oscillations in swine tracheal smooth muscle cells. J Pharmacol Exp Ther 276:178–186.

    PubMed  CAS  Google Scholar 

  67. Janssen LJ, Sims SM. 1993; Histamine activates Cl- and K+ currents in guinea-pig tracheal myocytes: convergence with muscarinic signalling pathway. J Physiol 465:661–677.

    PubMed  CAS  Google Scholar 

  68. Janssen LJ, Sims SM. 1994; Substance P activates Cl- and K+ conductances in guinea-pig tracheal smooth muscle cells. Can J Physiol Pharmacol 72:705–710.

    PubMed  CAS  Google Scholar 

  69. Wang YX, Kotlikoff MI. 2000; Signalling pathway for histamine activation of non-selective cation channels in equine tracheal myocytes. J Physiol 523 Pt 1:131–138.

    PubMed  CAS  Google Scholar 

  70. Henmi S, Imaizumi Y, Muraki K, Watanabe M. 1996; Time course of Ca(2+)-dependent K+ and Cl- currents in single smooth muscle cells of guinea-pig trachea. Eur J Pharmacol 306:227–236.

    PubMed  CAS  Google Scholar 

  71. Bao R, Lifshitz LM, Tuft RA, Bellve K, Fogarty KE, ZhuGe R. 2008; A close association of RyRs with highly dense clusters of Ca2+−activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle. J Gen Physiol 132:145–160.

    PubMed  CAS  Google Scholar 

  72. Aickin CC, Vermue NA. 1983; Microelectrode measurement of intracellular chloride activity in smooth muscle cells of guinea-pig ureter. Pflugers Arch 397:25–28.

    PubMed  CAS  Google Scholar 

  73. Janssen LJ, Daniel EE. 1991; Depolarizing agents induce oscillations in canine bronchial smooth muscle membrane potential: possible mechanisms. J Pharmacol Exp Ther 259:110–117.

    PubMed  CAS  Google Scholar 

  74. Liu X, Farley JM. 1996; Acetylcholine-induced Ca++−dependent chloride current oscillations are mediated by inositol 1,4,5-trisphosphate in tracheal myocytes. J Pharmacol Exp Ther 277:796–804.

    PubMed  CAS  Google Scholar 

  75. Janssen LJ, Hague C, Nana R. 1998; Ionic mechanisms underlying electrical slow waves in canine airway smooth muscle. Am J Physiol 275:L516–L523.

    PubMed  CAS  Google Scholar 

  76. Ward SM, Burns AJ, Torihashi S, Sanders KM. 1994; Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480 (Pt 1):91–97.

    PubMed  CAS  Google Scholar 

  77. Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM. 2009; Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587:4887–4904.

    PubMed  CAS  Google Scholar 

  78. Janssen LJ, Sims SM. 1994; Spontaneous transient inward currents and rhythmicity in canine and guinea-pig tracheal smooth muscle cells. Pflugers Arch 427:473–480.

    PubMed  CAS  Google Scholar 

  79. Pollock NS, Kargacin ME, Kargacin GJ. 1998; Chloride channel blockers inhibit Ca2+ uptake by the smooth muscle sarcoplasmic reticulum. Biophys J 75:1759–1766.

    PubMed  CAS  Google Scholar 

  80. Elble RC, Ji G, Nehrke K, DeBiasio J, Kingsley PD, Kotlikoff MI, Pauli BU. 2002; Molecular and functional characterization of a murine calcium-activated chloride channel expressed in smooth muscle. J Biol Chem 277:18586–18591.

    PubMed  CAS  Google Scholar 

  81. Zhou Y, Dong Q, Louahed J, Dragwa C, Savio D, Huang M, Weiss C, Tomer Y, McLane MP, Nicolaides NC, Levitt RC. 2001; Characterization of a calcium-activated chloride channel as a shared target of Th2 cytokine pathways and its potential involvement in asthma. Am J Respir Cell Mol Biol 25:486–491.

    PubMed  CAS  Google Scholar 

  82. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV. 2007; Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A 104:15858–15863.

    PubMed  CAS  Google Scholar 

  83. Toda M, Tulic MK, Levitt RC, Hamid Q. 2002; A calcium-activated chloride channel (HCLCA1) is strongly related to IL-9 expression and mucus production in bronchial epithelium of patients with asthma. J Allergy Clin Immunol 109:246–250.

    PubMed  CAS  Google Scholar 

  84. Hoshino M, Morita S, Iwashita H, Sagiya Y, Nagi T, Nakanishi A, Ashida Y, Nishimura O, Fujisawa Y, Fujino M. 2002; Increased expression of the human Ca2+−activated Cl- channel 1 (CaCC1) gene in the asthmatic airway. Am J Respir Crit Care Med 165:1132–1136.

    PubMed  Google Scholar 

  85. Nakanishi A, Morita S, Iwashita H, Sagiya Y, Ashida Y, Shirafuji H, Fujisawa Y, Nishimura O, Fujino M. 2001; Role of gob-5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc Natl Acad Sci U S A 98:5175–5180.

    PubMed  CAS  Google Scholar 

  86. Nakano T, Inoue H, Fukuyama S, Matsumoto K, Matsumura M, Tsuda M, Matsumoto T, Aizawa H, Nakanishi Y. 2006; Niflumic acid suppresses interleukin-13-induced asthma phenotypes. Am J Respir Crit Care Med 173:1216–1221.

    PubMed  CAS  Google Scholar 

  87. Galietta LJ. 2009; The TMEM16 protein family: a new class of chloride channels? Biophys J 97:3047–3053.

    PubMed  CAS  Google Scholar 

  88. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ. 2008; TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594.

    PubMed  CAS  Google Scholar 

  89. Schroeder BC, Cheng T, Jan YN, Jan LY. 2008; Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029.

    PubMed  CAS  Google Scholar 

  90. Duran C, Qu Z, Osunkoya AO, Cui Y, Hartzell HC. 2012; ANOs 3–7 in the anoctamin/Tmem16 Cl- channel family are intracellular proteins. Am J Physiol Cell Physiol 302:C482–C493.

    PubMed  CAS  Google Scholar 

  91. Schreiber R, Uliyakina I, Kongsuphol P, Warth R, Mirza M, Martins JR, Kunzelmann K. 2010; Expression and function of epithelial anoctamins. J Biol Chem 285:7838–7845.

    PubMed  CAS  Google Scholar 

  92. Tsutsumi S, Kamata N, Vokes TJ, Maruoka Y, Nakakuki K, Enomoto S, Omura K, Amagasa T, Nagayama M, Saito-Ohara F, Inazawa J, Moritani M, Yamaoka T, Inoue H, Itakura M. 2004; The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am J Hum Genet 74:1255–1261.

    PubMed  CAS  Google Scholar 

  93. Bolduc V, Marlow G, Boycott KM, Saleki K, Inoue H, Kroon J, Itakura M, Robitaille Y, Parent L, Baas F, Mizuta K, Kamata N, Richard I, Linssen WH, Mahjneh I, de VM, Bashir R, Brais B. 2010; Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 86:213–221.

    PubMed  CAS  Google Scholar 

  94. Hicks D, Sarkozy A, Muelas N, Koehler K, Huebner A, Hudson G, Chinnery PF, Barresi R, Eagle M, Polvikoski T, Bailey G, Miller J, Radunovic A, Hughes PJ, Roberts R, Krause S, Walter MC, Laval SH, Straub V, Lochmuller H, Bushby K. 2011; A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain 134:171–182.

    PubMed  Google Scholar 

  95. Mahjneh I, Jaiswal J, Lamminen A, Somer M, Marlow G, Kiuru-Enari S, Bashir R. 2010; A new distal myopathy with mutation in anoctamin 5. Neuromuscul Disord 20:791–795.

    PubMed  Google Scholar 

  96. Kiessling A, Weigle B, Fuessel S, Ebner R, Meye A, Rieger MA, Schmitz M, Temme A, Bachmann M, Wirth MP, Rieber EP. 2005; D-TMPP: a novel androgen-regulated gene preferentially expressed in prostate and prostate cancer that is the first characterized member of an eukaryotic gene family. Prostate 64:387–400.

    PubMed  CAS  Google Scholar 

  97. Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S. 2013; Calcium-dependent Phospholipid Scramblase Activity of TMEM16 Family Members. J Biol Chem. 288:13305–13316.

    PubMed  CAS  Google Scholar 

  98. Tian Y, Schreiber R, Kunzelmann K. 2012; Anoctamins are a family of Ca2+−activated Cl- channels. J Cell Sci 125:4991–4998.

    PubMed  CAS  Google Scholar 

  99. Suzuki J, Umeda M, Sims PJ, Nagata S. 2010; Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838.

    PubMed  CAS  Google Scholar 

  100. Scudieri P, Sondo E, Ferrera L, Galietta LJ. 2012; The anoctamin family: TMEM16A and TMEM16B as calcium-activated chloride channels. Exp Physiol 97:177–183.

    PubMed  CAS  Google Scholar 

  101. Reisert J, Bauer PJ, Yau KW, Frings S. 2003; The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122:349–363.

    PubMed  CAS  Google Scholar 

  102. Strotmann J, Levai O, Fleischer J, Schwarzenbacher K, Breer H. 2004; Olfactory receptor proteins in axonal processes of chemosensory neurons. J Neurosci 24:7754–7761.

    PubMed  CAS  Google Scholar 

  103. Pifferi S, Dibattista M, Menini A. 2009; TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038.

    PubMed  CAS  Google Scholar 

  104. Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H. 2009; ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 106:11776–11781.

    PubMed  CAS  Google Scholar 

  105. Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J, Hartzell HC. 2011; Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A 108:8891–8896.

    PubMed  CAS  Google Scholar 

  106. Tian Y, Kongsuphol P, Hug M, Ousingsawat J, Witzgall R, Schreiber R, Kunzelmann K. 2011; Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J 25:1058–1068.

    PubMed  CAS  Google Scholar 

  107. Katoh M, Katoh M. 2004; Identification and characterization of TMEM16E and TMEM16F genes in silico. Int J Oncol 24:1345–1349.

    PubMed  CAS  Google Scholar 

  108. Fallah G, Romer T, tro-Dassen S, Braam U, Markwardt F, Schmalzing G. 2011; TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels. Mol Cell Proteomics 10:M110.

    PubMed  Google Scholar 

  109. Sheridan JT, Worthington EN, Yu K, Gabriel SE, Hartzell HC, Tarran R. 2011; Characterization of the oligomeric structure of the Ca(2+)-activated Cl- channel Ano1/TMEM16A. J Biol Chem 286:1381–1388.

    PubMed  CAS  Google Scholar 

  110. Tien J, Lee HY, Minor DL, Jr., Jan YN, Jan LY. 2013; Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC). Proc Natl Acad Sci U S A 110:6352–6357.

    PubMed  CAS  Google Scholar 

  111. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY. 2009; Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A 106:21413–21418.

    PubMed  CAS  Google Scholar 

  112. Espinosa I, Lee CH, Kim MK, Rouse BT, Subramanian S, Montgomery K, Varma S, Corless CL, Heinrich MC, Smith KS, Wang Z, Rubin B, Nielsen TO, Seitz RS, Ross DT, West RB, Cleary ML, van de RM. 2008; A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32:210–218.

    PubMed  Google Scholar 

  113. Liu W, Lu M, Liu B, Huang Y, Wang K. 2012; Inhibition of Ca(2+)-activated Cl(−) channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett 326:41–51.

    PubMed  CAS  Google Scholar 

  114. Ayoub C, Wasylyk C, Li Y, Thomas E, Marisa L, Robe A, Roux M, Abecassis J, de RA, Wasylyk B. 2010; ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br J Cancer 103:715–726.

    PubMed  CAS  Google Scholar 

  115. Mazzone A, Eisenman ST, Strege PR, Yao Z, Ordog T, Gibbons SJ, Farrugia G. 2012; Inhibition of cell proliferation by a selective inhibitor of the Ca(2+)-activated Cl(−) channel, Ano1. Biochem Biophys Res Commun 427:248–253.

    PubMed  CAS  Google Scholar 

  116. Stanich JE, Gibbons SJ, Eisenman ST, Bardsley MR, Rock JR, Harfe BD, Ordog T, Farrugia G. 2011; Ano1 as a regulator of proliferation. Am J Physiol Gastrointest Liver Physiol 301:G1044–G1051.

    PubMed  CAS  Google Scholar 

  117. Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BL, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR. 2012; Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 109:16354–16359

    PubMed  CAS  Google Scholar 

  118. Rock JR, O’Neal WK, Gabriel SE, Randell SH, Harfe BD, Boucher RC, Grubb BR. 2009; Transmembrane protein 16A (TMEM16A) is a Ca2+−regulated Cl- secretory channel in mouse airways. J Biol Chem 284:14875–14880.

    PubMed  CAS  Google Scholar 

  119. Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K. 2009; Loss of TMEM16A causes a defect in epithelial Ca2+−dependent chloride transport. J Biol Chem 284:28698–28703.

    PubMed  CAS  Google Scholar 

  120. Namkung W, Yao Z, Finkbeiner WE, Verkman AS. 2011; Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. FASEB J 25:4048–4062.

    PubMed  CAS  Google Scholar 

  121. Namkung W, Phuan PW, Verkman AS. 2011; TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 286:2365–2374.

    PubMed  CAS  Google Scholar 

  122. Scudieri P, Caci E, Bruno S, Ferrera L, Schiavon M, Sondo E, Tomati V, Gianotti A, Zegarra-Moran O, Pedemonte N, Rea F, Ravazzolo R, Galietta LJ. 2012; Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J Physiol 590:6141–6155.

    PubMed  CAS  Google Scholar 

  123. Shore SA. 2004; Direct effects of Th2 cytokines on airway smooth muscle. Curr Opin Pharmacol 4:235–240.

    PubMed  CAS  Google Scholar 

  124. Rock JR, Futtner CR, Harfe BD. 2008; The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev Biol 321:141–149.

    PubMed  CAS  Google Scholar 

  125. Zhang CH, Li Y, Zhao W, Lifshitz LM, Li H, Harfe BD, Zhu MS, ZhuGe R. 2013; The transmembrane protein 16A Ca(2+)-activated Cl- channel in airway smooth muscle contributes to airway hyperresponsiveness. Am J Respir Crit Care Med 187:374–381.

    PubMed  CAS  Google Scholar 

  126. Yu K, Duran C, Qu Z, Cui YY, Hartzell HC. 2012; Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ Res 110:990–999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Emala Sr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gallos, G., Emala, C.W. (2014). Calcium-Activated Chloride Channels. In: Wang, YX. (eds) Calcium Signaling In Airway Smooth Muscle Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-01312-1_5

Download citation

Publish with us

Policies and ethics