Transient Receptor Potential and Orai Channels in Airway Smooth Muscle Cells

  • Jun-Hua Xiao
  • Yong-Xiao Wang
  • Yun-Min ZhengEmail author


Airway smooth muscle cells (ASMCs) are a crucial component of the airway passage. In ASMCs, an increase in intracellular calcium concentration ([Ca2+]i) acts as a key determinant of force generation, cell proliferation, and other cellular responses. [Ca2+]i is generated and controlled by numerous ion channels. Recent studies demonstrate that multiple members of transient receptor potential (TRP) channels, including TRPC1-6 and TRPV1, 2, and 4, are expressed and important for the regulation of [Ca2+]i in ASMCs. In particular, TRPC channels play an important role in the control of the resting [Ca2+]i and extracellular Ca2+ influx. Three Orai molecules, known as the pore-forming subunits of specific store-operated Ca2+ channels (SOCCs), are expressed in ASMCs. Two stromal-interacting molecule proteins (Stim1 and Stim2), which serve as the endoplasmic reticulum Ca2+ sensors and thus are the major molecular components of SOCCs, are expressed in ASMCs. Identification of TRP, Orai, and Stim molecules involved in controlling and regulating [Ca2+]i, contractility, and proliferation in ASMCs offers the exciting prospect of new and novel therapies for the treatment of airway diseases such as asthma, chronic obstructive pulmonary disease, and others.


Transient receptor potential channels Orai molecules Stromal-interacting molecule proteins Store-operated Ca2+ channels Airway smooth muscle cells 


  1. 1.
    Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112: 744–760PubMedCrossRefGoogle Scholar
  2. 2.
    Elias JA, Zhu Z, Chupp G, Homer RJ (1999) Airway remodeling in asthma. J Clin Invest 104: 1001–1006PubMedCrossRefGoogle Scholar
  3. 3.
    Gosling M, Poll C, Li S (2005) TRP channels in airway smooth muscle as therapeutic targets. Naunyn Schmiedeberg’s Arch Pharmacol 371: 277–284CrossRefGoogle Scholar
  4. 4.
    Rodger I (1989) Drugs affecting calcium ions in airway smooth muscle. In: Barnes PJ (ed) New Drugs for asthma. IBC, London, pp 455–456Google Scholar
  5. 5.
    Panettieri RA Jr (1998) Cellular and molecular mechanisms regulating airway smooth muscle proliferation and cell adhesion molecue expression. Am J Respir Crit Care Med 158: S133–S140PubMedCrossRefGoogle Scholar
  6. 6.
    Sweeney M, McDaniel SS, Platoshyn O, Zhang S, Yu Y, Lapp BR, et al (2002) Role of capacitative Ca2+ entry in bronchial contraction and remodeling. J Appl Physiol 92:1594–1602PubMedGoogle Scholar
  7. 7.
    Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217PubMedCrossRefGoogle Scholar
  8. 8.
    Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328PubMedCrossRefGoogle Scholar
  9. 9.
    Williams RT, Manji SS, Parker NJ, Hancock MS, Van SL, Eid JP, et al (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685PubMedCrossRefGoogle Scholar
  10. 10.
    Smyth JT, Putney JW (2012) Regulation of store-operated calcium entry during cell division. Biochem Soc Trans 40: 119–123PubMedCrossRefGoogle Scholar
  11. 11.
    Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169: 435–445PubMedCrossRefGoogle Scholar
  12. 12.
    Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell Jr JE, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+ -store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241PubMedCrossRefGoogle Scholar
  13. 13.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185PubMedCrossRefGoogle Scholar
  14. 14.
    Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312: 1220–1223PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, et al (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103: 9357–9362PubMedCrossRefGoogle Scholar
  16. 16.
    Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103: 1289–1299PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373: 193–198PubMedCrossRefGoogle Scholar
  18. 18.
    Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang MZ, et al (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96: 2060–2064PubMedCrossRefGoogle Scholar
  19. 19.
    Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99: 7461–7466PubMedCrossRefGoogle Scholar
  20. 20.
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397: 259–263PubMedCrossRefGoogle Scholar
  21. 21.
    Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, et al (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274: 27359–27370PubMedCrossRefGoogle Scholar
  22. 22.
    Dietrich A, Mederos y Schnitzler M, Kalwa H, Storch U, Gudermann T (2005) Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels. Naunyn Schmiedeberg’s Arch Pharmacol 371:257–265CrossRefGoogle Scholar
  23. 23.
    Plant TD, Schaefer M (2005) Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedeberg’s Arch Pharmacol 371: 266–276CrossRefGoogle Scholar
  24. 24.
    Wang, YX, Zheng YM (2011) Molecular expression and functional role of canonical transient receptor potential channels in airway smooth muscle cells. Adv Exp Med Biol 704: 731–747PubMedCrossRefGoogle Scholar
  25. 25.
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila storeoperated channel. Proc Natl Acad Sci USA 92: 9652–9656PubMedCrossRefGoogle Scholar
  26. 26.
    Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, et al (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA 93: 15195–15202PubMedCrossRefGoogle Scholar
  27. 27.
    Ay B, Prakash YS, Pabelick CM, Sieck GC (2004) Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 286: L909–L917PubMedCrossRefGoogle Scholar
  28. 28.
    Ong HL, Brereton HM, Harland ML, Barritt GJ (2003) Evidence for the expression of transient receptor potential proteins in guinea pig airway smooth muscle cells. Respirology 8: 23–32PubMedCrossRefGoogle Scholar
  29. 29.
    Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP (2004) Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol 30:145–154PubMedCrossRefGoogle Scholar
  30. 30.
    Xiao JH, Zheng YM, Liao B, Wang YX (2010) Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am J Respir Cell Mol Biol 43: 17–25PubMedCrossRefGoogle Scholar
  31. 31.
    White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME (2006) Role of transient receptor potential C3 in. TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol 35:243–251PubMedCrossRefGoogle Scholar
  32. 32.
    Ong HL, Chen J, Chataway T, Brereton H, Zhang L, Downs T, et al (2002) Specific detection of the endogenous transient receptor potential (TRP)-1 protein in liver and airway smooth muscle cells using immunoprecipitation and Western-blot analysis. Biochem J 364:641–648PubMedCrossRefGoogle Scholar
  33. 33.
    Godin N, Rousseau E (2007) TRPC6 silencing in primary airway smooth muscle cells inhibits protein expression without affecting OAG-induced calcium entry. Mol Cell Biochem 296:193–201PubMedCrossRefGoogle Scholar
  34. 34.
    Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310PubMedCrossRefGoogle Scholar
  35. 35.
    Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742: 21–36PubMedCrossRefGoogle Scholar
  36. 36.
    Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559: 685–706PubMedCrossRefGoogle Scholar
  37. 37.
    Gudermann T, Mederos y Schnitzler M, Dietrich A (2004). Receptor operated cation entry-more than esoteric terminology? Sci STKE, pe35Google Scholar
  38. 38.
    Vennekens R, Voets T, Bindels RJ, Droogmans G, Nilius B (2002) Current understanding of mammalian TRP homologues. Cell Calcium 31:253–264PubMedCrossRefGoogle Scholar
  39. 39.
    O’Neil RG, Brown RC (2003) The vanilloid receptor family of calcium-permeable channels: molecular integrators of microenvironmental stimuli. News Physiol Sci 18:226–231PubMedGoogle Scholar
  40. 40.
    Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23:183–191PubMedCrossRefGoogle Scholar
  41. 41.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824PubMedCrossRefGoogle Scholar
  42. 42.
    Watanabe N, Horie S, Michael GJ, Keir S, Spina D, Page CP, Priestley JV (2006) Immunohistochemical co-localization of transient receptor potential vanilloid (TRPV)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience 141: 1533–1543PubMedCrossRefGoogle Scholar
  43. 43.
    Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, et al (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287: L272–L278PubMedCrossRefGoogle Scholar
  44. 44.
    Zou, JJ, Gao YD, Geng S, Yang J (2011) Role of STIM1/Orai1-mediated store- operated Ca2+ entry in airway smooth muscle cell proliferation. J Appl Physiol 110: 1256–1263PubMedCrossRefGoogle Scholar
  45. 45.
    Peel SE, Liu B, Hall IP (2008) ORAI and store-operated calcium influx in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38: 744–749PubMedCrossRefGoogle Scholar
  46. 46.
    Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481: 147–155PubMedCrossRefGoogle Scholar
  47. 47.
    Peel SE, Liu B, Hall IP (2006) A key role for STIM1 in store operated calcium channel activation in airway smooth muscle. Respir Res 7: 119PubMedCrossRefGoogle Scholar
  48. 48.
    Suganuma N, Ito S, Aso H, Kondo M, Sato M, Sokabe M, Hasegawa Y (2012) STIM1 regulates platelet-derived growth factor-induced migration and Ca2+ influx in human airway smooth muscle cells. PLoS One 7:e45056PubMedCrossRefGoogle Scholar
  49. 49.
    Gosens R, Meurs H, Bromhaar MM, McKay S, Nelemans SA, Zaagsma J (2002) Functional characterization of serum- and growth factor-induced phenotypic changes in intact bovine tracheal smooth muscle. Br J Pharmacol 137: 459–466PubMedCrossRefGoogle Scholar
  50. 50.
    Cloutier M, Campbell S, Basora N, Proteau S, Payet MD, Rousseau E (2003) 20-HETE inotropic effects involve the activation of a nonselective cationic current in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 285: L560–L568PubMedGoogle Scholar
  51. 51.
    Dietrich A, Gollasch M, Chubanov V, Mederos y Schnitzler M, Dubrovska G, Herz U, et al (2003) Studies on TRPC6 deficient mice reveal its nonredundant role in the regulation of smooth muscle tone. Naunyn Schmiedeberg’s Arch Pharmacol 367: 238Google Scholar
  52. 52.
    Liedtke W, Simon SA (2004) A possible role for TRPV4 receptors in asthma. Am J Physiol Lung Cell Mol Physiol 287: L269–L271PubMedCrossRefGoogle Scholar
  53. 53.
    Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A 100: 13698–13703PubMedCrossRefGoogle Scholar
  54. 54.
    Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285: C96–C101PubMedCrossRefGoogle Scholar
  55. 55.
    Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278: 22664–22668PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437: 902–905PubMedCrossRefGoogle Scholar
  57. 57.
    Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, et al (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9: 432–443PubMedCrossRefGoogle Scholar
  58. 58.
    Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, et al (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9: 89–96PubMedCrossRefGoogle Scholar
  59. 59.
    Gwack Y, Srikanth S, Oh-hora M, Hogan PG, Lamperti ED, Yamashita M, et al (2008) Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol 28: 5209–5222PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PharmacologyTongji Medical College of Huazhong University of Science and TechnologyWuhanP.R. China
  2. 2.Center for Cardiovascular Sciences (MC-8)Albany Medical CollegeAlbanyUSA

Personalised recommendations