Airway Smooth Muscle Malfunction in COPD

  • Yunchao SuEmail author


Airway smooth muscle has been conventionally regarded as a contractile partner in bronchoconstriction. It also interacts dynamically with its environment, especially under inflammatory conditions, modulates the pathological processes in the development of chronic obstructive pulmonary disease (COPD). Airway smooth muscle cells are able to proliferate, to secrete cytokines, growth factors, prostanoid, and extracellular matrix proteins, and to adapt to these functions by changing its phenotype from contractile to synthetic. In COPD, smooth muscle in the small airways exhibit hyperresponsiveness and higher contractility in calcium-dependent and -independent mechanisms. Airway smooth muscle cell hyperplasia and hypertrophy as well as increased deposition of extracellular matrix (ECM) proteins contribute to airway remodeling and thickening. Many inflammatory mediators and growth factors, including interleukins, tumor necrosis factor-α (TNF-α), leukotrienes, prostaglandins, acetylcholine, platelet-derived growth factor (PDGF), transform growth factor β (TGFβ), connective tissue growth factor (CTGF), endothelin, and reactive oxygen species (ROS), contribute to the alterations of airway smooth muscle in COPD. Investigating the mechanism and regulatory pathways of airway smooth muscle malfunction may provide novel options for the prevention and treatment for airflow obstruction in COPD.


Airway Smooth muscle Inflammation Bronchoconstriction Remodeling 


  1. 1.
    Sherry J, Murohy BS, Xu J, Kenneth D, Kochanek MA. Deaths: Preliminary Data for 2010. National Vital Statistics Reports 2012 Jan 11;60(4):1-52.Google Scholar
  2. 2.
    Opazo Saez AM, Seow CY, Pare PD. Peripheral airway smooth muscle mechanics in obstructive airways disease. Am.J.Respir.Crit Care Med. 2000 Mar;161(3 Pt 1):910-7.PubMedGoogle Scholar
  3. 3.
    Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir.Res. 2006;7:73.PubMedGoogle Scholar
  4. 4.
    Kanner RE, Connett JE, Altose MD, Buist AS, Lee WW, Tashkin DP, Wise RA. Gender difference in airway hyperresponsiveness in smokers with mild COPD. The Lung Health Study. Am.J.Respir.Crit Care Med. 1994 Oct;150(4):956-61.Google Scholar
  5. 5.
    Scichilone N, Battaglia S, La SA, Bellia V. Clinical implications of airway hyperresponsiveness in COPD. Int.J.Chron.Obstruct.Pulmon.Dis. 2006;1(1):49-60.PubMedGoogle Scholar
  6. 6.
    Sanderson MJ, Delmotte P, Bai Y, Perez-Zogbhi JF. Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc.Am.Thorac.Soc. 2008 Jan 1;5(1):23-31.PubMedGoogle Scholar
  7. 7.
    Janssen LJ. Ionic mechanisms and Ca(2+) regulation in airway smooth muscle contraction: do the data contradict dogma? Am.J.Physiol Lung Cell Mol.Physiol 2002 Jun;282(6):L1161-L1178.PubMedGoogle Scholar
  8. 8.
    Tazzeo T, Zhang Y, Keshavjee S, Janssen LJ. Ryanodine receptors decant internal Ca2+ store in human and bovine airway smooth muscle. Eur.Respir.J. 2008 Aug;32(2):275-84.PubMedGoogle Scholar
  9. 9.
    Prakash YS, Kannan MS, Walseth TF, Sieck GC. Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am.J.Physiol 1998 Jun;274(6 Pt 1):C1653-C1660.PubMedGoogle Scholar
  10. 10.
    Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB, Kotlikoff MI. FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am.J.Physiol Cell Physiol 2004 Mar;286(3):C538-C546.PubMedGoogle Scholar
  11. 11.
    Fliegert R, Gasser A, Guse AH. Regulation of calcium signalling by adenine-based second messengers. Biochem.Soc.Trans. 2007 Feb;35(Pt 1):109-14.PubMedGoogle Scholar
  12. 12.
    Croxton TL, Lande B, Hirshman CA. Role of G proteins in agonist-induced Ca2+ sensitization of tracheal smooth muscle. Am.J.Physiol 1998 Oct;275(4 Pt 1):L748-L755.PubMedGoogle Scholar
  13. 13.
    Hirshman CA, Lande B, Croxton TL. Role of M2 muscarinic receptors in airway smooth muscle contraction. Life Sci. 1999;64(6-7):443-8.PubMedGoogle Scholar
  14. 14.
    Lutz S, Freichel-Blomquist A, Yang Y, Rumenapp U, Jakobs KH, Schmidt M, Wieland T. The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J.Biol.Chem. 2005 Mar 25;280(12):11134-9.PubMedGoogle Scholar
  15. 15.
    Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003 Oct;83(4):1325-58.PubMedGoogle Scholar
  16. 16.
    Sakai H, Chiba Y, Misawa M. Role of Rho kinase in endothelin-1-induced phosphorylation of CPI-17 in rat bronchial smooth muscle. Pulm.Pharmacol.Ther. 2007;20(6):734-9.PubMedGoogle Scholar
  17. 17.
    Baarsma HA, Menzen MH, Halayko AJ, Meurs H, Kerstjens HA, Gosens R. beta-Catenin signaling is required for TGF-beta1-induced extracellular matrix production by airway smooth muscle cells. Am.J.Physiol Lung Cell Mol.Physiol 2011 Dec;301(6):L956-L965.PubMedGoogle Scholar
  18. 18.
    Gosens R, Baarsma HA, Heijink IH, Oenema TA, Halayko AJ, Meurs H, Schmidt M. De novo synthesis of {beta}-catenin via H-Ras and MEK regulates airway smooth muscle growth. FASEB J. 2010 Mar;24(3):757-68.PubMedGoogle Scholar
  19. 19.
    Pera T, Gosens R, Lesterhuis AH, Sami R, Toorn M, Zaagsma J, Meurs H. Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype. Respir.Res. 2010;11:48.PubMedGoogle Scholar
  20. 20.
    Gosens R, Roscioni SS, Dekkers BG, Pera T, Schmidt M, Schaafsma D, Zaagsma J, Meurs H. Pharmacology of airway smooth muscle proliferation. Eur.J.Pharmacol. 2008 May 13;585(2-3):385-97.PubMedGoogle Scholar
  21. 21.
    Oenema TA, Kolahian S, Nanninga JE, Rieks D, Hiemstra PS, Zuyderduyn S, Halayko AJ, Meurs H, Gosens R. Pro-inflammatory mechanisms of muscarinic receptor stimulation in airway smooth muscle. Respir.Res. 2010;11:130.PubMedGoogle Scholar
  22. 22.
    Ogawa E, Elliott WM, Hughes F, Eichholtz TJ, Hogg JC, Hayashi S. Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD. Am.J.Physiol Lung Cell Mol.Physiol 2004 Jan;286(1):L189-L197.PubMedGoogle Scholar
  23. 23.
    Shapiro SD. Vascular atrophy and VEGFR-2 signaling: old theories of pulmonary emphysema meet new data. J.Clin.Invest 2000 Dec;106(11):1309-10.PubMedGoogle Scholar
  24. 24.
    Wright JL. Emphysema: concepts under change--a pathologist's perspective. Mod.Pathol. 1995 Oct;8(8):873-80.PubMedGoogle Scholar
  25. 25.
    Halayko AJ, Stelmack GL, Yamasaki A, McNeill K, Unruh H, Rector E. Distribution of phenotypically disparate myocyte subpopulations in airway smooth muscle. Can.J.Physiol Pharmacol. 2005 Jan;83(1):104-16.PubMedGoogle Scholar
  26. 26.
    Schaafsma D, McNeill KD, Stelmack GL, Gosens R, Baarsma HA, Dekkers BG, Frohwerk E, Penninks JM, Sharma P, Ens KM, et al. Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. Am.J.Physiol Cell Physiol 2007 Jul;293(1):C429-C439.PubMedGoogle Scholar
  27. 27.
    Halayko AJ, Salari H, Ma X, Stephens NL. Markers of airway smooth muscle cell phenotype. Am.J.Physiol 1996 Jun;270(6 Pt 1):L1040-L1051.PubMedGoogle Scholar
  28. 28.
    Ma X, Wang Y, Stephens NL. Serum deprivation induces a unique hypercontractile phenotype of cultured smooth muscle cells. Am.J.Physiol 1998 May;274(5 Pt 1):C1206-C1214.PubMedGoogle Scholar
  29. 29.
    Liu HW, Halayko AJ, Fernandes DJ, Harmon GS, McCauley JA, Kocieniewski P, McConville J, Fu Y, Forsythe SM, Kogut P, et al. The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. Am.J.Respir.Cell Mol.Biol. 2003 Jul;29(1):39-47.PubMedGoogle Scholar
  30. 30.
    Camoretti-Mercado B, Liu HW, Halayko AJ, Forsythe SM, Kyle JW, Li B, Fu Y, McConville J, Kogut P, Vieira JE, et al. Physiological control of smooth muscle-specific gene expression through regulated nuclear translocation of serum response factor. J.Biol.Chem. 2000 Sep 29;275(39):30387-93.PubMedGoogle Scholar
  31. 31.
    Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J.Biol.Chem. 2001 Jan 5;276(1):341-7.PubMedGoogle Scholar
  32. 32.
    Koziol-White CJ, Panettieri RA, Jr. Airway smooth muscle and immunomodulation in acute exacerbations of airway disease. Immunol.Rev. 2011 Jul;242(1):178-85.PubMedGoogle Scholar
  33. 33.
    Kuwano K, Bosken CH, Pare PD, Bai TR, Wiggs BR, Hogg JC. Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am.Rev.Respir.Dis. 1993 Nov;148(5):1220-5.PubMedGoogle Scholar
  34. 34.
    Churg A, Tai H, Coulthard T, Wang R, Wright JL. Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall. Am.J.Respir.Crit Care Med. 2006 Dec 15;174(12):1327-34.PubMedGoogle Scholar
  35. 35.
    Baarsma HA, Meurs H, Halayko AJ, Menzen MH, Schmidt M, Kerstjens HA, Gosens R. Glycogen synthase kinase-3 regulates cigarette smoke extract- and IL-1beta-induced cytokine secretion by airway smooth muscle. Am.J.Physiol Lung Cell Mol.Physiol 2011 Jun;300(6):L910-L919.PubMedGoogle Scholar
  36. 36.
    Kim V, Rogers TJ, Criner GJ. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc.Am.Thorac.Soc. 2008 May 1;5(4):478-85.PubMedGoogle Scholar
  37. 37.
    Asada M, Yamaya M, Ebihara S, Yasuda H, Tomita N, Kubo H, Sasaki H. Interleukin-1beta gene polymorphisms associated with COPD. Chest 2005 Aug;128(2):1072-3.PubMedGoogle Scholar
  38. 38.
    Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am.J.Respir.Cell Mol.Biol. 2005 Apr;32(4):311-8.PubMedGoogle Scholar
  39. 39.
    Clarke D, Damera G, Sukkar MB, Tliba O. Transcriptional regulation of cytokine function in airway smooth muscle cells. Pulm.Pharmacol.Ther. 2009 Oct;22(5):436-45.PubMedGoogle Scholar
  40. 40.
    Elias JA, Wu Y, Zheng T, Panettieri R. Cytokine- and virus-stimulated airway smooth muscle cells produce IL-11 and other IL-6-type cytokines. Am.J.Physiol 1997 Sep;273(3 Pt 1):L648-L655.PubMedGoogle Scholar
  41. 41.
    Roland M, Bhowmik A, Sapsford RJ, Seemungal TA, Jeffries DJ, Warner TD, Wedzicha JA. Sputum and plasma endothelin-1 levels in exacerbations of chronic obstructive pulmonary disease. Thorax 2001 Jan;56(1):30-5.PubMedGoogle Scholar
  42. 42.
    Walter RE, Wilk JB, Larson MG, Vasan RS, Keaney JF, Jr., Lipinska I, O'Connor GT, Benjamin EJ. Systemic inflammation and COPD: the Framingham Heart Study. Chest 2008 Jan;133(1):19-25.PubMedGoogle Scholar
  43. 43.
    Kuhn C, III, Homer RJ, Zhu Z, Ward N, Flavell RA, Geba GP, Elias JA. Airway hyperresponsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am.J.Respir.Cell Mol.Biol. 2000 Mar;22(3):289-95.PubMedGoogle Scholar
  44. 44.
    Mortaz E, Henricks PA, Kraneveld AD, Givi ME, Garssen J, Folkerts G. Cigarette smoke induces the release of CXCL-8 from human bronchial epithelial cells via TLRs and induction of the inflammasome. Biochim.Biophys.Acta 2011 Sep;1812(9):1104-10.PubMedGoogle Scholar
  45. 45.
    Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N. Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 1997 Aug;112(2):505-10.PubMedGoogle Scholar
  46. 46.
    Gompertz S, O'Brien C, Bayley DL, Hill SL, Stockley RA. Changes in bronchial inflammation during acute exacerbations of chronic bronchitis. Eur.Respir.J. 2001 Jun;17(6):1112-9.PubMedGoogle Scholar
  47. 47.
    Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL. Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am.J.Respir.Crit Care Med. 2004 Sep 1;170(5):492-8.PubMedGoogle Scholar
  48. 48.
    Kersul AL, Iglesias A, Rios A, Noguera A, Forteza A, Serra E, Agusti A, Cosio BG. Molecular mechanisms of inflammation during exacerbations of chronic obstructive pulmonary disease. Arch.Bronconeumol. 2011 Apr;47(4):176-83.PubMedGoogle Scholar
  49. 49.
    Hardaker EL, Bacon AM, Carlson K, Roshak AK, Foley JJ, Schmidt DB, Buckley PT, Comegys M, Panettieri RA, Jr., Sarau HM, et al. Regulation of TNF-alpha- and IFN-gamma-induced CXCL10 expression: participation of the airway smooth muscle in the pulmonary inflammatory response in chronic obstructive pulmonary disease. FASEB J. 2004 Jan;18(1):191-3.PubMedGoogle Scholar
  50. 50.
    Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respir.Res. 2006;7:125.PubMedGoogle Scholar
  51. 51.
    Amrani Y. TNF-alpha and calcium signaling in airway smooth muscle cells: a never-ending story with promising therapeutic relevance. Am.J.Respir.Cell Mol.Biol. 2007 Mar;36(3):387-8.PubMedGoogle Scholar
  52. 52.
    Hunter I, Cobban HJ, Vandenabeele P, MacEwan DJ, Nixon GF. Tumor necrosis factor-alpha-induced activation of RhoA in airway smooth muscle cells: role in the Ca2+ sensitization of myosin light chain20 phosphorylation. Mol.Pharmacol. 2003 Mar;63(3):714-21.PubMedGoogle Scholar
  53. 53.
    Sukkar MB, Hughes JM, Armour CL, Johnson PR. Tumour necrosis factor-alpha potentiates contraction of human bronchus in vitro. Respirology. 2001 Sep;6(3):199-203.PubMedGoogle Scholar
  54. 54.
    White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am.J.Respir.Cell Mol.Biol. 2006 Aug;35(2):243-51.PubMedGoogle Scholar
  55. 55.
    Profita M, Giorgi RD, Sala A, Bonanno A, Riccobono L, Mirabella F, Gjomarkaj M, Bonsignore G, Bousquet J, Vignola AM. Muscarinic receptors, leukotriene B4 production and neutrophilic inflammation in COPD patients. Allergy 2005 Nov;60(11):1361-9.PubMedGoogle Scholar
  56. 56.
    Antczak A, Ciebiada M, Pietras T, Piotrowski WJ, Kurmanowska Z, Gorski P. Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Arch.Med.Sci. 2012 May 9;8(2):277-85.PubMedGoogle Scholar
  57. 57.
    Montuschi P, Kharitonov SA, Ciabattoni G, Barnes PJ. Exhaled leukotrienes and prostaglandins in COPD. Thorax 2003 Jul;58(7):585-8.PubMedGoogle Scholar
  58. 58.
    Davi G, Basili S, Vieri M, Cipollone F, Santarone S, Alessandri C, Gazzaniga P, Cordova C, Violi F. Enhanced thromboxane biosynthesis in patients with chronic obstructive pulmonary disease. The Chronic Obstructive Bronchitis and Haemostasis Study Group. Am.J.Respir.Crit Care Med. 1997 Dec;156(6):1794-9.PubMedGoogle Scholar
  59. 59.
    Hardy CC, Robinson C, Tattersfield AE, Holgate ST. The bronchoconstrictor effect of inhaled prostaglandin D2 in normal and asthmatic men. N.Engl.J.Med. 1984 Jul 26;311(4):209-13.PubMedGoogle Scholar
  60. 60.
    Coleman RA, Sheldrick RL. Prostanoid-induced contraction of human bronchial smooth muscle is mediated by TP-receptors. Br.J.Pharmacol. 1989 Mar;96(3):688-92.PubMedGoogle Scholar
  61. 61.
    Devillier P, Bessard G. Thromboxane A2 and related prostaglandins in airways. Fundam.Clin.Pharmacol. 1997;11(1):2-18.PubMedGoogle Scholar
  62. 62.
    Rolin S, Masereel B, Dogne JM. Prostanoids as pharmacological targets in COPD and asthma. Eur.J.Pharmacol. 2006 Mar 8;533(1-3):89-100.PubMedGoogle Scholar
  63. 63.
    Gosens R, Zaagsma J, Grootte BM, Nelemans A, Meurs H. Acetylcholine: a novel regulator of airway smooth muscle remodelling? Eur.J.Pharmacol. 2004 Oct 1;500(1-3):193-201.PubMedGoogle Scholar
  64. 64.
    On LS, Boonyongsunchai P, Webb S, Davies L, Calverley PM, Costello RW. Function of pulmonary neuronal M(2) muscarinic receptors in stable chronic obstructive pulmonary disease. Am.J.Respir.Crit Care Med. 2001 May;163(6):1320-5.PubMedGoogle Scholar
  65. 65.
    Undem BJ, Kollarik M. The role of vagal afferent nerves in chronic obstructive pulmonary disease. Proc.Am.Thorac.Soc. 2005;2(4):355-60.PubMedGoogle Scholar
  66. 66.
    Kawashima K, Fujii T. The lymphocytic cholinergic system and its biological function. Life Sci. 2003 Mar 28;72(18-19):2101-9.PubMedGoogle Scholar
  67. 67.
    Wessler I, Kilbinger H, Bittinger F, Unger R, Kirkpatrick CJ. The non-neuronal cholinergic system in humans: expression, function and pathophysiology. Life Sci. 2003 Mar 28;72(18-19):2055-61.PubMedGoogle Scholar
  68. 68.
    Chiba Y, Takada Y, Miyamoto S, MitsuiSaito M, Karaki H, Misawa M. Augmented acetylcholine-induced, Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. Br.J.Pharmacol. 1999 Jun;127(3):597-600.PubMedGoogle Scholar
  69. 69.
    Krymskaya VP, Orsini MJ, Eszterhas AJ, Brodbeck KC, Benovic JL, Panettieri RA, Jr., Penn RB. Mechanisms of proliferation synergy by receptor tyrosine kinase and G protein-coupled receptor activation in human airway smooth muscle. Am.J.Respir.Cell Mol.Biol. 2000 Oct;23(4):546-54.PubMedGoogle Scholar
  70. 70.
    Krymskaya VP, Goncharova EA, Ammit AJ, Lim PN, Goncharov DA, Eszterhas A, Panettieri RA, Jr. Src is necessary and sufficient for human airway smooth muscle cell proliferation and migration. FASEB J. 2005 Mar;19(3):428-30.PubMedGoogle Scholar
  71. 71.
    Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu.Rev.Cell Dev.Biol. 1997;13:513-609.PubMedGoogle Scholar
  72. 72.
    Aubert JD, Hayashi S, Hards J, Bai TR, Pare PD, Hogg JC. Platelet-derived growth factor and its receptor in lungs from patients with asthma and chronic airflow obstruction. Am.J.Physiol 1994 Jun;266(6 Pt 1):L655-L663.PubMedGoogle Scholar
  73. 73.
    Xing AP, Hu XY, Shi YW, DU YC. Implication of PDGF signaling in cigarette smoke-induced pulmonary arterial hypertension in rat. Inhal.Toxicol. 2012 Jul;24(8):468-75.PubMedGoogle Scholar
  74. 74.
    Zhu HJ, Burgess AW. Regulation of transforming growth factor-beta signaling. Mol.Cell Biol.Res.Commun. 2001 Nov;4(6):321-30.PubMedGoogle Scholar
  75. 75.
    Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J.Gastroenterol. 2007 Jun 14;13(22):3056-62.PubMedGoogle Scholar
  76. 76.
    Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J.Cell Sci. 2003 Jan 15;116(Pt 2):217-24.PubMedGoogle Scholar
  77. 77.
    Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999 Feb 5;96(3):319-28.PubMedGoogle Scholar
  78. 78.
    Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J.Cell Biol. 2004 Jun 7;165(5):723-34.PubMedGoogle Scholar
  79. 79.
    Ma W, Han W, Greer PA, Tuder RM, Toque HA, Wang KKW, Caldwell RW, Su Y. Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension and its inhibition attenuates pathologic features of disease. J.Clin.Invest 2011 Nov 1;121(11):4548-66.PubMedGoogle Scholar
  80. 80.
    Bertolino P, Deckers M, Lebrin F, ten DP. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest 2005 Dec;128(6 Suppl):585S-90S.PubMedGoogle Scholar
  81. 81.
    Lebrin F, Deckers M, Bertolino P, ten DP. TGF-beta receptor function in the endothelium. Cardiovasc.Res. 2005 Feb 15;65(3):599-608.PubMedGoogle Scholar
  82. 82.
    Qing J, Zhang Y, Derynck R. Structural and functional characterization of the transforming growth factor-beta -induced Smad3/c-Jun transcriptional cooperativity. J.Biol.Chem. 2000 Dec 8;275(49):38802-12.PubMedGoogle Scholar
  83. 83.
    Tsukada S, Westwick JK, Ikejima K, Sato N, Rippe RA. SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells. J.Biol.Chem. 2005 Mar 18;280(11):10055-64.PubMedGoogle Scholar
  84. 84.
    Penttinen RP, Kobayashi S, Bornstein P. Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc.Natl.Acad.Sci.U.S.A 1988 Feb;85(4):1105-8.PubMedGoogle Scholar
  85. 85.
    Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI. Transforming growth factor-beta(1) stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Circulation 2001 Feb 27;103(8):1121-7.PubMedGoogle Scholar
  86. 86.
    Ensenat D, Hassan S, Reyna SV, Schafer AI, Durante W. Transforming growth factor-beta 1 stimulates vascular smooth muscle cell L-proline transport by inducing system A amino acid transporter 2 (SAT2) gene expression. Biochem.J. 2001 Dec 1;360(Pt 2):507-12.PubMedGoogle Scholar
  87. 87.
    Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am.J.Physiol Lung Cell Mol.Physiol 2006 Apr;290(4):L661-L673.PubMedGoogle Scholar
  88. 88.
    Bobik A. Transforming growth factor-betas and vascular disorders. Arterioscler.Thromb.Vasc.Biol. 2006 Aug;26(8):1712-20.PubMedGoogle Scholar
  89. 89.
    Wang Y, it-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, Huang J, Offenstadt G, Combadiere C, Renia L, et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J.Clin.Invest 2010 Feb 1;120(2):422-32.PubMedGoogle Scholar
  90. 90.
    Black JL, Burgess JK, Johnson PR. Airway smooth muscle--its relationship to the extracellular matrix. Respir.Physiol Neurobiol. 2003 Sep 16;137(2-3):339-46.PubMedGoogle Scholar
  91. 91.
    Chung KF. Cytokines as targets in chronic obstructive pulmonary disease. Curr.Drug Targets. 2006 Jun;7(6):675-81.PubMedGoogle Scholar
  92. 92.
    Ning W, Li CJ, Kaminski N, Feghali-Bostwick CA, Alber SM, Di YP, Otterbein SL, Song R, Hayashi S, Zhou Z, et al. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc.Natl.Acad.Sci.U.S.A 2004 Oct 12;101(41):14895-900.PubMedGoogle Scholar
  93. 93.
    Le AV, Cho JY, Miller M, McElwain S, Golgotiu K, Broide DH. Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice. J.Immunol. 2007 Jun 1;178(11):7310-6.PubMedGoogle Scholar
  94. 94.
    Michaeloudes C, Sukkar MB, Khorasani NM, Bhavsar PK, Chung KF. TGF-beta regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. Am.J.Physiol Lung Cell Mol.Physiol 2011 Feb;300(2):L295-L304.PubMedGoogle Scholar
  95. 95.
    Chaqour B, Goppelt-Struebe M. Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006 Aug;273(16):3639-49.PubMedGoogle Scholar
  96. 96.
    Llinas L, Peinado VI, Ramon GJ, Rabinovich R, Pizarro S, Rodriguez-Roisin R, Barbera JA, Bastos R. Similar gene expression profiles in smokers and patients with moderate COPD. Pulm.Pharmacol.Ther. 2011 Feb;24(1):32-41.PubMedGoogle Scholar
  97. 97.
    Zhang Y, Edvinsson L, Xu CB. Up-regulation of endothelin receptors induced by cigarette smoke--involvement of MAPK in vascular and airway hyper-reactivity. ScientificWorldJournal. 2010;10:2157-66.PubMedGoogle Scholar
  98. 98.
    Wedgwood S, Dettman RW, Black SM. ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am.J.Physiol Lung Cell Mol.Physiol 2001 Nov;281(5):L1058-L1067.PubMedGoogle Scholar
  99. 99.
    Maxwell MJ, Goldie RG, Henry PJ. Ca2+ signalling by endothelin receptors in rat and human cultured airway smooth muscle cells. Br.J.Pharmacol. 1998 Dec;125(8):1768-78.PubMedGoogle Scholar
  100. 100.
    Xu CB, Lei Y, Chen Q, Pehrson C, Larsson L, Edvinsson L. Cigarette smoke extracts promote vascular smooth muscle cell proliferation and enhances contractile responses in the vasculature and airway. Basic Clin.Pharmacol.Toxicol. 2010 Dec;107(6):940-8.PubMedGoogle Scholar
  101. 101.
    Akhtar S, Podgoreanu M, Harrison BA, Brull SJ. Effect of lidocaine on endothelin-1-mediated airway smooth muscle contraction in the rat trachea. Minerva Anestesiol. 2008 Nov;74(11):643-50.PubMedGoogle Scholar
  102. 102.
    McWhinnie R, Pechkovsky DV, Zhou D, Lane D, Halayko AJ, Knight DA, Bai TR. Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am.J.Physiol Lung Cell Mol.Physiol 2007 Jan;292(1):L278-L286.PubMedGoogle Scholar
  103. 103.
    Fehr JJ, Hirshman CA, Emala CW. Cellular signaling by the potent bronchoconstrictor endothelin-1 in airway smooth muscle. Crit Care Med. 2000 Jun;28(6):1884-8.PubMedGoogle Scholar
  104. 104.
    Carratu P, Scuri M, Styblo JL, Wanner A, Glassberg MK. ET-1 induces mitogenesis in ovine airway smooth muscle cells via ETA and ETB receptors. Am.J.Physiol 1997 May;272(5 Pt 1):L1021-L1024.PubMedGoogle Scholar
  105. 105.
    Iwata S, Ito S, Iwaki M, Kondo M, Sashio T, Takeda N, Sokabe M, Hasegawa Y, Kume H. Regulation of endothelin-1-induced interleukin-6 production by Ca2+ influx in human airway smooth muscle cells. Eur.J.Pharmacol. 2009 Mar 1;605(1-3):15-22.PubMedGoogle Scholar
  106. 106.
    MacNee W. Oxidants and COPD. Curr.Drug Targets.Inflamm.Allergy 2005 Dec;4(6):627-41.PubMedGoogle Scholar
  107. 107.
    van der TM, Rezayat D, Kauffman HF, Bakker SJ, Gans RO, Koeter GH, Choi AM, van Oosterhout AJ, Slebos DJ. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am.J.Physiol Lung Cell Mol.Physiol 2009 Jul;297(1):L109-L114.Google Scholar
  108. 108.
    Epperlein MM, Nourooz-Zadeh J, Noronha-Dutra AA, Woolf N. Nitric oxide in cigarette smoke as a mediator of oxidative damage. Int.J.Exp.Pathol. 1996 Oct;77(5):197-200.PubMedGoogle Scholar
  109. 109.
    Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J.Biol.Chem. 2005 Jul 8;280(27):25350-60.PubMedGoogle Scholar
  110. 110.
    Deslee G, ir-Kirk TL, Betsuyaku T, Woods JC, Moore CH, Gierada DS, Conradi SH, Atkinson JJ, Toennies HM, Battaile JT, et al. Cigarette Smoke Induces Nucleic Acid Oxidation in Lung Fibroblasts. Am.J.Respir.Cell Mol.Biol. 2009 Dec 11.Google Scholar
  111. 111.
    Kovacic P, Somanathan R. Pulmonary toxicity and environmental contamination: radicals, electron transfer, and protection by antioxidants. Rev.Environ.Contam Toxicol. 2009;201:41-69.PubMedGoogle Scholar
  112. 112.
    Shapiro SD, Senior RM. Matrix metalloproteinases. Matrix degradation and more. Am.J.Respir.Cell Mol.Biol. 1999 Jun;20(6):1100-2.PubMedGoogle Scholar
  113. 113.
    Adcock IM, Cosio B, Tsaprouni L, Barnes PJ, Ito K. Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response. Antioxid.Redox.Signal. 2005 Jan;7(1-2):144-52.PubMedGoogle Scholar
  114. 114.
    Ravasi S, Citro S, Viviani B, Capra V, Rovati GE. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation. Respir.Res. 2006;7:42.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, Department of Medicine, Vascular Biology CenterCenter for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents UniversityAugustaUSA

Personalised recommendations