Ca2+ Signaling and P2 Receptors in Airway Smooth Muscle

  • Luis M. MontañoEmail author
  • Edgar Flores-Soto
  • Carlos Barajas-López


Adenosine 5′-triphosphate (ATP) acts as an extracellular mediator with direct biological effects mediated by purinergic 2 (P2) receptors in different tissues, including the respiratory system. ATP is hydrolyzed by ectonucleotidases, enzymes bound to the plasma membrane. There are three major families of ATP-hydrolyzing ectonucleotidases: the ectonucleotide triphosphate diphosphohydrolases, the ectonucleotide pyrophosphatase/phosphodiesterases, and the alkaline phosphatases. ATP induces a biphasic response (a contraction followed by a relaxation) in airway smooth muscle of different species (guinea pig and rat), including human bronchial rings. In the majority of the species, ATP-induced contraction is associated to an increment of intracellular Ca2+ concentration ([Ca2+]i) mediated by stimulation of P2Y or P2X receptors in the airway smooth muscle. In the guinea-pig airway smooth muscle the contraction is mediated by bronchoconstrictor prostaglandins (thromboxane) and involves P2Y4 and P2Y6 receptors on the airway epithelium. However, epithelium removal prevents ATP-induced contraction and, paradoxically, induces relaxation without affecting the Ca2+ signaling. This ATP-induced relaxation occurs by smooth muscle prostaglandin production (PGE2), which involves a Gs protein activation and the subsequent enhancement of voltage-dependent K+ and Ca2+-dependent K+ channels. Activation of these K+ channels occurs through adenylyl cyclase-cAMP pathway. The physiological role of P2X and P2Y receptors in airway smooth muscle is complex and species dependent, and it would be expected to change during inflammation. Thus, further research is required in asthma to determine the purinoceptorsʼ role during this pathology.


Airway smooth muscle ATP Purinergic receptors P2X receptors P2Y receptors 



This study was partly supported by a grant from DGAPA-UNAM (IN200613-3) to Dr Luis M. Montaño.


  1. 1.
    Advenier C, Bidet D, Floch-Saint-Aubin A, Renier A (1982) Contribution of prostaglandins and thromboxanes to the adenosine and ATP-induced contraction of guinea-pig isolated trachea. Br J Pharmacol 77:39–44PubMedCrossRefGoogle Scholar
  2. 2.
    Aksoy MO, Kelsen SG (1994) Relaxation of rabbit tracheal smooth muscle by adenine nucleotides: mediation by P2-purinoceptors. Am J Respir Cell Mol Biol 10:230–236PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson CM, Nedergaard M (2006) Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 29:257–262PubMedCrossRefGoogle Scholar
  4. 4.
    Bahra P, Mesher J, Li S, Poll CT, Danahay H (2004) P2Y2-receptor-mediated activation of a contralateral, lanthanide-sensitive calcium entry pathway in the human airway epithelium. Br J Pharmacol 143:91–98PubMedCrossRefGoogle Scholar
  5. 5.
    Bergner A, Sanderson MJ (2002) ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices. Am J Physiol Lung Cell Mol Physiol 283:L1271–1279PubMedGoogle Scholar
  6. 6.
    Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMedGoogle Scholar
  7. 7.
    Boeynaems JM, Pearson JD (1990) P2 purinoceptors on vascular endothelial cells: physiological significance and transduction mechanisms. Trends Pharmacol Sci 11:34–37PubMedCrossRefGoogle Scholar
  8. 8.
    Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797PubMedCrossRefGoogle Scholar
  9. 9.
    Chavez J, Vargas MH, Rebollar-Ayala DC, Diaz-Hernandez V, Cruz-Valderrama JE, Flores-Soto E, Flores-Garcia M, Jimenez-Vargas NN, Barajas-Lopez C, Montano LM (2013) Inhibition of extracellular nucleotides hydrolysis intensifies the allergic bronchospasm. A novel protective role of ectonucleotidases. Allergy, DOI:  10.1111/all.12113 PubMedGoogle Scholar
  10. 10.
    Dai JM, Kuo KH, Leo JM, van Breemen C, Lee CH (2006) Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am J Physiol Lung Cell Mol Physiol 290:L459–469PubMedCrossRefGoogle Scholar
  11. 11.
    Eisner DA, Lederer WJ (1985) Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol 248:C189–202PubMedGoogle Scholar
  12. 12.
    Fausther M, Pelletier J, Ribeiro CM, Sevigny J, Picher M (2010) Cystic fibrosis remodels the regulation of purinergic signaling by NTPDase1 (CD39) and NTPDase3. Am J Physiol Lung Cell Mol Physiol 298:L804–818PubMedCrossRefGoogle Scholar
  13. 13.
    Fedan JS, Belt JJ, Yuan LX, Frazer DG (1993) Contractile effects of nucleotides in guinea pig isolated, perfused trachea: involvement of respiratory epithelium, prostanoids and Na+ and Cl- channels. J Pharmacol Exp Ther 264:210–216PubMedGoogle Scholar
  14. 14.
    Fedan JS, Belt JJ, Yuan LX, Frazer DG (1993) Relaxant effects of nucleotides in guinea pig isolated, perfused trachea: lack of involvement of prostanoids, Cl- channels and adenosine. J Pharmacol Exp Ther 264:217–220PubMedGoogle Scholar
  15. 15.
    Flores-Soto E, Carbajal V, Reyes-Garcia J, Garcia-Hernandez LM, Figueroa A, Checa M, Barajas-Lopez C, Montano LM (2011) In airways ATP refills sarcoplasmic reticulum via P2X smooth muscle receptors and induces contraction through P2Y epithelial receptors. Pflugers Arch 461:261–275PubMedCrossRefGoogle Scholar
  16. 16.
    Fortner CN, Breyer RM, Paul RJ (2001) EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2. Am J Physiol Lung Cell Mol Physiol 281:L469–474PubMedGoogle Scholar
  17. 17.
    Govindaraju V, Martin JG, Maghni K, Ferraro P, Michoud MC (2005) The effects of extracellular purines and pyrimidines on human airway smooth muscle cells. J Pharmacol Exp Ther 315:941–948PubMedCrossRefGoogle Scholar
  18. 18.
    Jansen S, Stefan C, Creemers JW, Waelkens E, Van Eynde A, Stalmans W, Bollen M (2005) Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J Cell Sci 118:3081–3089PubMedCrossRefGoogle Scholar
  19. 19.
    Kamikawa Y, Shimo Y (1976) Mediation of prostaglandin E2 in the biphasic response to ATP of the isolated tracheal muscle of guinea-pigs. J Pharm Pharmacol 28:294–297PubMedCrossRefGoogle Scholar
  20. 20.
    Kawagoe H, Soma O, Goji J, Nishimura N, Narita M, Inazawa J, Nakamura H, Sano K (1995) Molecular cloning and chromosomal assignment of the human brain-type phosphodiesterase I/nucleotide pyrophosphatase gene (PDNP2). Genomics 30:380–384PubMedCrossRefGoogle Scholar
  21. 21.
    Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174PubMedCrossRefGoogle Scholar
  22. 22.
    Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, Voigt M, Humphrey PP (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118PubMedGoogle Scholar
  23. 23.
    Kukulski F, Levesque SA, Sevigny J (2011) Impact of ectoenzymes on P2 and P1 receptor signaling. Adv Pharmacol 61:263–299PubMedCrossRefGoogle Scholar
  24. 24.
    Michoud MC, Tao FC, Pradhan AA, Martin JG (1999) Mechanisms of the potentiation by adenosine of adenosine triphosphate-induced calcium release in tracheal smooth-muscle cells. Am J Respir Cell Mol Biol 21:30–36PubMedCrossRefGoogle Scholar
  25. 25.
    Michoud MC, Tolloczko B, Martin JG (1997) Effects of purine nucleotides and nucleoside on cytosolic calcium levels in rat tracheal smooth muscle cells. Am J Respir Cell Mol Biol 16:199–205PubMedCrossRefGoogle Scholar
  26. 26.
    Millan JL (2006) Alkaline Phosphatases : Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341PubMedCrossRefGoogle Scholar
  27. 27.
    Montano LM, Carbajal V, Vargas MH, Garcia-Hernandez LM, Diaz-Hernandez V, Checa M, Barajas-Lopez C (2013) Histamine, carbachol and serotonin induce hyperresponsiveness to ATP in guinea pig tracheas. Involvement of COX-2 pathway. Pflugers Arch 465:1171–1179PubMedCrossRefGoogle Scholar
  28. 28.
    Montano LM, Cruz-Valderrama JE, Figueroa A, Flores-Soto E, Garcia-Hernandez LM, Carbajal V, Segura P, Mendez C, Diaz V, Barajas-Lopez C (2011) Characterization of P2Y receptors mediating ATP induced relaxation in guinea pig airway smooth muscle: involvement of prostaglandins and K+ channels. Pflugers Arch 462:573–585PubMedCrossRefGoogle Scholar
  29. 29.
    Mounkaila B, Marthan R, Roux E (2005) Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation. Respir Res 6:143PubMedCrossRefGoogle Scholar
  30. 30.
    Nagaoka M, Nara M, Tamada T, Kume H, Oguma T, Kikuchi T, Zaini J, Moriya T, Ichinose M, Tamura G, Hattori T (2009) Regulation of adenosine 5′-triphosphate (ATP)-gated P2X4 receptors on tracheal smooth muscle cells. Respir Physiol Neurobiol 166:61–67PubMedCrossRefGoogle Scholar
  31. 31.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  32. 32.
    Oguma T, Ito S, Kondo M, Makino Y, Shimokata K, Honjo H, Kamiya K, Kume H (2007) Roles of P2X receptors and Ca2+ sensitization in extracellular adenosine triphosphate-induced hyperresponsiveness in airway smooth muscle. Clin Exp Allergy 37:893–900PubMedCrossRefGoogle Scholar
  33. 33.
    Picher M, Boucher RC (2001) Metabolism of extracellular nucleotides in human airways by multienzyme system Drug Dev Res 52:66–75CrossRefGoogle Scholar
  34. 34.
    Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479PubMedCrossRefGoogle Scholar
  35. 35.
    Piper AS, Hollingsworth M (1996) ATP and beta,gamma-methylene ATP produce relaxation of guinea-pig isolated trachealis muscle via actions at P1 purinoceptors. Eur J Pharmacol 307:183–189PubMedCrossRefGoogle Scholar
  36. 36.
    Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430PubMedCrossRefGoogle Scholar
  37. 37.
    Stefan C, Gijsbers R, Stalmans W, Bollen M (1999) Differential regulation of the expression of nucleotide pyrophosphatases/phosphodiesterases in rat liver. Biochim Biophys Acta 1450:45–52PubMedCrossRefGoogle Scholar
  38. 38.
    Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2:361–370PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luis M. Montaño
    • 1
    Email author
  • Edgar Flores-Soto
    • 1
  • Carlos Barajas-López
    • 2
  1. 1.Departamento de Farmacología, Edificio de Investigación, sexto piso, laboratorio 3, Facultad de MedicinaUniversidad Nacional Autónoma de México, Ciudad UniversitariaMéxicoMexico
  2. 2.División de Biología MolecularInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMexico

Personalised recommendations