Advertisement

Mathematical Modeling of Calcium Dynamics in Airway Smooth Muscle Cells

  • James SneydEmail author
  • Pengxing Cao
  • Xiahui Tan
  • Michael J. Sanderson
Chapter

Abstract

Oscillations in the concentration of free cytoplasmic calcium ([Ca2+] i ) play a vital role in the generation and maintenance of force by airway smooth muscle (ASM) cells. Mathematical models have an important role to play in the study of such complex dynamic phenomena, and can be used to construct and test hypotheses for how such oscillations might occur, and how properties such as the oscillation period might be controlled. We briefly discuss the underlying principles of the construction of mathematical models of calcium dynamics, and show how our current model can be used to understand how oscillations of [Ca2+] i in ASM are the result of a complex interplay between inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyRs). Agonist-stimulated production of inositol trisphosphate (IP3) opens IP3R, resulting in the release of Ca2+ from the endoplasmic reticulum (ER). This released Ca2+ stimulates the release of additional Ca2+ from both IP3R and RyR, leading to cycles of Ca2+ release and reuptake from the ER. In the absence of IP3 (no agonist), when the ER is overloaded with Ca2+ these cycles of release and reuptake are mediated primarily by the RyR. Conversely, in the presence of IP3 (with agonist), when the ER is partially depleted of Ca2+, these cycles are mediated primarily by the IP3R. Thus, an understanding of both IP3R and RyR is required for an understanding of how [Ca2+] i oscillations are controlled in ASM.

Keywords

Calcium oscillations Calcium waves Inositol trisphosphate receptor Ryanodine receptor 

Notes

Acknowledgements

This work was supported by National Institutes of Health Grant R01 HL103405 and by the University of Auckland, New Zealand.

References

  1. 1.
    A. Atri, J. Amundson, D. Clapham and J. Sneyd (1993) A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte, Biophys J, 65, 1727–39PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Bai, M. Edelmann and M. J. Sanderson (2009) The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca2+ signaling of airway smooth muscle cells, Am J Physiol Lung Cell Mol Physiol, 297, L347–61PubMedCrossRefGoogle Scholar
  3. 3.
    Y. Bai and M. J. Sanderson (2006) Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IPi3 receptor, Respir Res, 7, 34PubMedCrossRefGoogle Scholar
  4. 4.
    H. Cheng, W. J. Lederer and M. B. Cannell (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle, Science, 262, 740–4PubMedCrossRefGoogle Scholar
  5. 5.
    G. W. De Young and J. Keizer (1992) A single pool IP3-receptor based model for agonist stimulated Ca2+ oscillations, Proc Natl Acad Sci U S A, 89, 9895–9899PubMedCrossRefGoogle Scholar
  6. 6.
    A. Fajmut, M. Brumen and S. Schuster (2005) Theoretical model of the interactions between Ca2+, calmodulin and myosin light chain kinase, FEBS Lett, 579, 4361–6PubMedCrossRefGoogle Scholar
  7. 7.
    M. Falcke (2003) On the role of stochastic channel behavior in intracellular Ca2+ dynamics, Biophys J, 84, 42–56PubMedCrossRefGoogle Scholar
  8. 8.
    M. Falcke (2004) Reading the patterns in living cells - the physics of Ca2+ signaling, Advances in Physics, 53, 255–440CrossRefGoogle Scholar
  9. 9.
    D. Friel (1995) [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model, Biophys J, 68, 1752–1766PubMedCrossRefGoogle Scholar
  10. 10.
    E. Gin, M. Falcke, L. E. Wagner, D. I. Yule and J. Sneyd (2009) Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors, J Theor Biol, 257, 460–74PubMedCrossRefGoogle Scholar
  11. 11.
    C. M. Hai and R. A. Murphy (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle, Am J Physiol, 254, C99–106PubMedGoogle Scholar
  12. 12.
    A. F. Huxley (1957) Muscle structure and theories of contraction, Progress in Biophysics, 7, 255–318Google Scholar
  13. 13.
    J. P. Keener and J. Sneyd (2009) Mathematical Physiology, Second Edition, Springer-Verlag, New YorkGoogle Scholar
  14. 14.
    A. P. LeBeau, D. I. Yule, G. E. Groblewski and J. Sneyd (1999) Agonist-dependent phosphorylation of the inositol 1,4,5-trisphosphate receptor: A possible mechanism for agonist-specific calcium oscillations in pancreatic acinar cells, J Gen Physiol, 113, 851–72PubMedCrossRefGoogle Scholar
  15. 15.
    M. Marhl, D. Noble and E. Roux (2006) Modeling of molecular and cellular mechanisms involved in Ca2+ signal encoding in airway myocytes, Cell Biochem Biophys, 46, 285–302PubMedCrossRefGoogle Scholar
  16. 16.
    P. Mbikou, A. Fajmut, M. Brumen and E. Roux (2006) Theoretical and experimental investigation of calcium-contraction coupling in airway smooth muscle, Cell Biochem Biophys, 46, 233–52PubMedCrossRefGoogle Scholar
  17. 17.
    O. Mignen, J. L. Thompson and T. J. Shuttleworth (2001) Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways, J Biol Chem, 276, 35676–83PubMedCrossRefGoogle Scholar
  18. 18.
    C. M. Pabelick, Y. S. Prakash, M. S. Kannan and G. C. Sieck (1999) Spatial and temporal aspects of calcium sparks in porcine tracheal smooth muscle cells, Am J Physiol, 277, L1018–25PubMedGoogle Scholar
  19. 19.
    J. F. Perez and M. J. Sanderson (2005) The Frequency of Calcium Oscillations Induced by 5-HT, ACH, and KCl Determine the Contraction of Smooth Muscle Cells of Intrapulmonary Bronchioles, J Gen Physiol, 125, 535–53Google Scholar
  20. 20.
    J. F. Perez-Zoghbi, Y. Bai and M. J. Sanderson (2010) Nitric oxide induces airway smooth muscle cell relaxation by decreasing the frequency of agonist-induced Ca2+ oscillations, J Gen Physiol, 135, 247–59PubMedCrossRefGoogle Scholar
  21. 21.
    Y. S. Prakash, M. S. Kannan and G. C. Sieck (1997) Regulation of intracellular calcium oscillations in porcine tracheal smooth muscle cells, Am J Physiol, 272, C966–75PubMedGoogle Scholar
  22. 22.
    Y. S. Prakash, C. M. Pabelick, M. S. Kannan and G. C. Sieck (2000) Spatial and temporal aspects of ACh-induced [Ca2+]i oscillations in porcine tracheal smooth muscle, Cell Calcium, 27, 153–62PubMedCrossRefGoogle Scholar
  23. 23.
    A. R. Ressmeyer, Y. Bai, P. Delmotte, K. F. Uy, P. Thistlethwaite, A. Fraire, O. Sato, M. Ikebe and M. J. Sanderson (2010) Human airway contraction and formoterol-induced relaxation is determined by Ca2+ oscillations and Ca2+ sensitivity, Am J Respir Cell Mol Biol, 43, 179–91PubMedCrossRefGoogle Scholar
  24. 24.
    E. Roux, P. J. Noble, D. Noble and M. Marhl (2006) Modelling of calcium handling in airway myocytes, Prog Biophys Mol Biol, 90, 64–87PubMedCrossRefGoogle Scholar
  25. 25.
    M. J. Sanderson, Y. Bai and J. Perez-Zoghbi (2010) Ca2+ oscillations regulate contraction of intrapulmonary smooth muscle cells, Adv Exp Med Biol, 661, 77–96PubMedCrossRefGoogle Scholar
  26. 26.
    M. J. Sanderson, P. Delmotte, Y. Bai and J. F. Perez-Zogbhi (2008) Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity, Proc Am Thorac Soc, 5, 23–31PubMedCrossRefGoogle Scholar
  27. 27.
    T. J. Shuttleworth, J. L. Thompson and O. Mignen (2007) STIM1 and the noncapacitative ARC channels, Cell Calcium, 42, 183–91PubMedCrossRefGoogle Scholar
  28. 28.
    I. Siekmann, L. E. Wagner, 2nd, D. Yule, C. Fox, D. Bryant, E. J. Crampin and J. Sneyd (2011) MCMC estimation of Markov models for ion channels, Biophys J, 100, 1919–29PubMedCrossRefGoogle Scholar
  29. 29.
    J. Sneyd and J. F. Dufour (2002) A dynamic model of the type-2 inositol trisphosphate receptor, Proc Natl Acad Sci U S A, 99, 2398–403PubMedCrossRefGoogle Scholar
  30. 30.
    J. Sneyd, K. Tsaneva-Atanasova, V. Reznikov, Y. Bai, M. J. Sanderson and D. I. Yule (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations, Proc Natl Acad Sci U S A, 103, 1675–80PubMedCrossRefGoogle Scholar
  31. 31.
    K. Thurley, A. Skupin, R. Thul and M. Falcke (2012) Fundamental properties of Ca2+ signals, Biochim Biophys Acta, 1820, 1185–94PubMedCrossRefGoogle Scholar
  32. 32.
    K. Thurley, I. F. Smith, S. C. Tovey, C. W. Taylor, I. Parker and M. Falcke (2011) Timescales of IP3-evoked Ca2+ spikes emerge from Ca2+ puffs only at the cellular level, Biophys J, 101, 2638–44PubMedCrossRefGoogle Scholar
  33. 33.
    I. Wang, A. Z. Politi, N. Tania, Y. Bai, M. J. Sanderson and J. Sneyd (2008) A mathematical model of airway and pulmonary arteriole smooth muscle, Biophys J, 94, 2053–64PubMedCrossRefGoogle Scholar
  34. 34.
    I. Y. Wang, Y. Bai, M. J. Sanderson and J. Sneyd (2010) A mathematical analysis of agonist- and KCl-induced Ca2+ oscillations in mouse airway smooth muscle cells, Biophys J, 98, 1170–81PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • James Sneyd
    • 1
    Email author
  • Pengxing Cao
    • 1
  • Xiahui Tan
    • 2
  • Michael J. Sanderson
    • 2
  1. 1.Department of MathematicsUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Microbiology and Physiological SystemsUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations