Advertisement

Role of Integrins in the Regulation of Calcium Signaling

  • Thai TranEmail author
  • Chun Ming Teoh
Chapter

Abstract

Integrins are a large family of transmembrane proteins that constitute the main receptors for extracellular components and are important in mediating intracellular signaling events that govern cell adhesion, shape, polarity, growth, differentiation, migration, and cell survival. Less well known is their involvement in regulating calcium signaling that may influence cell contraction. This chapter provides an overview of the current state of knowledge of the signaling mechanisms by which integrins may regulate calcium signaling with a focus on airway smooth muscle cells.

Keywords

Integrins Calcium Airway smooth muscle GPCR Crosstalk Asthma 

References

  1. 1.
    Ammit, A., Armour, C., and Black, J. (2000). Smooth-muscle myosin light-chain kinase content is increased in human sensitized airways. Am J Respir Crit Care Med 161, 257–263.PubMedCrossRefGoogle Scholar
  2. 2.
    Arcangeli, A., Becchetti, A., Mannini, A., Mugnai, G., De Filippi, P., Tarone, G., Del Bene, M.R., Barletta, E., Wanke, E., and Olivotto, M. (1993). Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol 122, 1131–1143.PubMedCrossRefGoogle Scholar
  3. 3.
    Argraves, W.S., Suzuki, S., Arai, H., Thompson, K., Pierschbacher, M.D., and Ruoslahti, E. (1987). Amino acid sequence of the human fibronectin receptor. J Cell Biol 105, 1183–1190.PubMedCrossRefGoogle Scholar
  4. 4.
    Balasubramanian, L., Ahmed, A., Lo, C.M., Sham, J.S., and Yip, K.P. (2007). Integrin-mediated mechanotransduction in renal vascular smooth muscle cells: activation of calcium sparks. Am J Physiol Regul Integr Comp Physiol 293, R1586–1594.PubMedCrossRefGoogle Scholar
  5. 5.
    Bergdahl, A., and Sward, K. (2004). Caveolae-associated signalling in smooth muscle. Can J Physiol Pharmacol 82, 289–299.PubMedCrossRefGoogle Scholar
  6. 6.
    Berridge, M.J. (2008). Smooth muscle cell calcium activation mechanisms. J Physiol 586, 5047–5061.PubMedCrossRefGoogle Scholar
  7. 7.
    Bhattacharya, S., Ying, X., Fu, C., Patel, R., Kuebler, W., Greenberg, S., and Bhattacharya, J. (2000). alpha(v)beta(3) integrin induces tyrosine phosphorylation-dependent Ca(2+) influx in pulmonary endothelial cells. Circ Res 86, 456–462.PubMedCrossRefGoogle Scholar
  8. 8.
    Burkin, D.J., Gu, M., Hodges, B.L., Campanelli, J.T., and Kaufman, S.J. (1998). A functional role for specific spliced variants of the alpha7beta1 integrin in acetylcholine receptor clustering. J Cell Biol 143, 1067–1075.PubMedCrossRefGoogle Scholar
  9. 9.
    Burkin, D.J., Kim, J.E., Gu, M., and Kaufman, S.J. (2000). Laminin and alpha7beta1 integrin regulate agrin-induced clustering of acetylcholine receptors. J Cell Sci 113 ( Pt 16), 2877–2886.PubMedGoogle Scholar
  10. 10.
    Burridge, K., and Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12, 463–518.PubMedCrossRefGoogle Scholar
  11. 11.
    Chan, W.L., Holstein-Rathlou, N.H., and Yip, K.P. (2001). Integrin mobilizes intracellular Ca(2+) in renal vascular smooth muscle cells. Am J Physiol Cell Physiol 280, C593–603.PubMedGoogle Scholar
  12. 12.
    Cheng, Q., Ross, R.S., and Walsh, K.B. (2004). Overexpression of the integrin beta(1A) subunit and the beta(1A) cytoplasmic domain modifies the beta-adrenergic regulation of the cardiac L-type Ca(2+)current. J Mol Cell Cardiol 36, 809–819.PubMedCrossRefGoogle Scholar
  13. 13.
    Chiba, Y., and Misawa, M. (2004). The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness. J Smooth Muscle Res 40, 155–167.PubMedCrossRefGoogle Scholar
  14. 14.
    Clark, E.A., and Brugge, J.S. (1995). Integrins and signal transduction pathways: the road taken. Science 268, 233–239.PubMedCrossRefGoogle Scholar
  15. 15.
    Dai, J.M., Kuo, K.H., Leo, J.M., van Breemen, C., and Lee, C.H. (2006). Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am J Physiol Lung Cell Mol Physiol 290, L459–469.PubMedCrossRefGoogle Scholar
  16. 16.
    Dekkers, B.G., Bos, I.S., Halayko, A.J., Zaagsma, J., and Meurs, H. (2010). The laminin beta1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma. Respir Res 11, 170.PubMedCrossRefGoogle Scholar
  17. 17.
    Dekkers, B.G., Schaafsma, D., Nelemans, S.A., Zaagsma, J., and Meurs, H. (2007). Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function. Am J Physiol Lung Cell Mol Physiol 292, L1405–1413.PubMedCrossRefGoogle Scholar
  18. 18.
    Elsherif, L., Huang, M.S., Shai, S.Y., Yang, Y., Li, R.Y., Chun, J., Mekany, M.A., Chu, A.L., Kaufman, S.J., and Ross, R.S. (2008). Combined deficiency of dystrophin and beta1 integrin in the cardiac myocyte causes myocardial dysfunction, fibrosis and calcification. Circ Res 102, 1109–1117.CrossRefGoogle Scholar
  19. 19.
    Fernandes, D.J., Bonacci, J.V., and Stewart, A.G. (2006). Extracellular matrix, integrins, and mesenchymal cell function in the airways. Curr Drug Targets 7, 567–577.PubMedCrossRefGoogle Scholar
  20. 20.
    Freyer, A.M., Johnson, S.R., and Hall, I.P. (2001). Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells. Am J Respir Cell Mol Biol 25, 569–576.PubMedCrossRefGoogle Scholar
  21. 21.
    Giancotti, F., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028–1032.PubMedCrossRefGoogle Scholar
  22. 22.
    Guo, C., Willem, M., Werner, A., Raivich, G., Emerson, M., Neyses, L., and Mayer, U. (2006). Absence of alpha 7 integrin in dystrophin-deficient mice causes a myopathy similar to Duchenne muscular dystrophy. Hum Mol Genet 15, 989–998.PubMedCrossRefGoogle Scholar
  23. 23.
    Halayko, A., Tran, T., and Gosens, R. (2008). Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins. Proc Am Thorac Soc 5, 80–88.PubMedCrossRefGoogle Scholar
  24. 24.
    Hirst, S.J., Walker, T.R., and Chilvers, E.R. (2000). Phenotypic diversity and molecular mechanisms of airway smooth muscle proliferation in asthma. Eur Respir J 16, 159–177.PubMedCrossRefGoogle Scholar
  25. 25.
    Hughes, P.E., Diaz-Gonzalez, F., Leong, L., Wu, C., McDonald, J.A., Shattil, S.J., and Ginsberg, M.H. (1996). Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 271, 6571–6574.PubMedCrossRefGoogle Scholar
  26. 26.
    Humphries, M. (2000). Integrin structure. Biochem Soc Trans 28, 311–339.PubMedCrossRefGoogle Scholar
  27. 27.
    Janssen, L.J., and Killian, K. (2006). Airway smooth muscle as a target of asthma therapy: history and new directions. Respir Res 7, 123.PubMedCrossRefGoogle Scholar
  28. 28.
    Kwon, M.S., Park, C.S., Choi, K., Ahnn, J., Kim, J.I., Eom, S.H., Kaufman, S.J., and Song, W.K. (2000). Calreticulin couples calcium release and calcium influx in integrin-mediated calcium signaling. Mol Biol Cell 11, 1433–1443.PubMedCrossRefGoogle Scholar
  29. 29.
    Lin, C.Y., Hilgenberg, L.G., Smith, M.A., Lynch, G., and Gall, C.M. (2008). Integrin regulation of cytoplasmic calcium in excitatory neurons depends upon glutamate receptors and release from intracellular stores. Mol Cell Neurosci 37, 770–780.PubMedCrossRefGoogle Scholar
  30. 30.
    Löster, K., Vossmeyer, D., Hofmann, W., Reutter, W., and Danker, K. (2001). alpha1 Integrin cytoplasmic domain is involved in focal adhesion formation via association with intracellular proteins. Biochem J 356, 233–240.PubMedCrossRefGoogle Scholar
  31. 31.
    Ma, X., Cheng, Z., Kong, H., Wang, Y., Unnah, H., Stephens, N.L., and Laviolette, M. (2002). Changes in biophysical and biochemical properties of single branchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol 283, L1181–1189.Google Scholar
  32. 32.
    Maniotis, A.J., Chen, C.S., and Ingber, D.E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94, 849–854.PubMedCrossRefGoogle Scholar
  33. 33.
    Mogford, J.E., Davis, G.E., Platts, S.H., and Meininger, G.A. (1996). Vascular smooth muscle alpha v beta 3 integrin mediates arteriolar vasodilation in response to RGD peptides. Circ Res 79, 821–826.PubMedCrossRefGoogle Scholar
  34. 34.
    Montiel, M., de la Blanca, E.P., and Jimenez, E. (2005). Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells. Biochem Biophys Res Commun 327, 971–978.PubMedCrossRefGoogle Scholar
  35. 35.
    Nguyen, T.T., Ward, J.P., and Hirst, S.J. (2005). beta1-Integrins mediate enhancement of airway smooth muscle proliferation by collagen and fibronectin. Am J Respir Crit Care Med 171, 217–223.PubMedCrossRefGoogle Scholar
  36. 36.
    Pabbidi, M.R., Ji, X., Samarel, A.M., and Lipsius, S.L. (2009). Laminin enhances beta(2)-adrenergic receptor stimulation of L-type Ca(2+) current via cytosolic phospholipase A(2) signalling in cat atrial myocytes. J Physiol 587, 4785–4797.PubMedCrossRefGoogle Scholar
  37. 37.
    Perez, J.F., and Sanderson, M.J. (2005). The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J Gen Physiol 125, 535–553.PubMedCrossRefGoogle Scholar
  38. 38.
    Rybin, V.O., Xu, X., Lisanti, M.P., and Steinberg, S.F. (2000). Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275, 41447–41457.PubMedCrossRefGoogle Scholar
  39. 39.
    Sadoshima, J., Takahashi, T., Jahn, L., and Izumo, S. (1992). Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci U S A 89, 9905–9909.PubMedCrossRefGoogle Scholar
  40. 40.
    Sanderson, M.J., Delmotte, P., Bai, Y., and Perez-Zogbhi, J.F. (2008). Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc Am Thorac Soc 5, 23–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Schneller, M., Vuori, K., and Ruoslahti, E. (1997). Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J 16, 5600–5607.PubMedCrossRefGoogle Scholar
  42. 42.
    Schwartz, M.A., Lechene, C., and Ingber, D.E. (1991). Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc Natl Acad Sci U S A 88, 7849–7853.PubMedCrossRefGoogle Scholar
  43. 43.
    Schwartz, M.A., Schaller, M.D., and Ginsberg, M.H. (1995). Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 11, 549–599.PubMedCrossRefGoogle Scholar
  44. 44.
    Schöttelndreier, H., Potter, B.V., Mayr, G.W., and Guse, A.H. (2001). Mechanisms involved in alpha6beta1-integrin-mediated Ca(2+) signalling. Cell Signal 13, 895–899.PubMedCrossRefGoogle Scholar
  45. 45.
    Shai, S.Y., Harpf, A.E., Babbitt, C.J., Jordan, M.C., Fishbein, M.C., Chen, J., Omura, M., Leil, T.A., Becker, K.D., Jiang, M., et al. (2002). Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90, 458–464.PubMedCrossRefGoogle Scholar
  46. 46.
    Sjaastad, M.D., Lewis, R.S., and Nelson, W.J. (1996). Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx. Mol Biol Cell 7, 1025–1041.PubMedCrossRefGoogle Scholar
  47. 47.
    Soldi, R., Mitola, S., Strasly, M., Defilippi, P., Tarone, G., and Bussolino, F. (1999). Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18, 882–892.PubMedCrossRefGoogle Scholar
  48. 48.
    Tran, T., Ens-Blackie, K., Rector, E., Stelmack, G., McNeill, K., Tarone, G., Gerthoffer, W., Unruh, H., and Halayko, A. (2007). Laminin-binding integrin alpha7 is required for contractile phenotype expression by human airway myocytes. Am J Respir Cell Mol Biol 37, 668–680.PubMedCrossRefGoogle Scholar
  49. 49.
    Tran, T., McNeill, K.D., Gerthoffer, W.T., Unruh, H., and Halayko, A.J. (2006). Endogenous laminin is required for human airway smooth muscle cell maturation. Respir Res 7, 117.PubMedCrossRefGoogle Scholar
  50. 50.
    Umesh, A., Thompson, M.A., Chini, E.N., Yip, K.P., and Sham, J.S. (2006). Integrin ligands mobilize Ca2+ from ryanodine receptor-gated stores and lysosome-related acidic organelles in pulmonary arterial smooth muscle cells. J Biol Chem 281, 34312–34323.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang, Y.G., Samarel, A.M., and Lipsius, S.L. (2000). Laminin acts via beta 1 integrin signalling to alter cholinergic regulation of L-type Ca(2+) current in cat atrial myocytes. J Physiol 526 Pt 1, 57–68.PubMedCrossRefGoogle Scholar
  52. 52.
    Wary, K.K., Mariotti, A., Zurzolo, C., and Giancotti, F.G. (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634.PubMedCrossRefGoogle Scholar
  53. 53.
    Woodard, A.S., García-Cardeña, G., Leong, M., Madri, J.A., Sessa, W.C., and Languino, L.R. (1998). The synergistic activity of alphavbeta3 integrin and PDGF receptor increases cell migration. J Cell Sci 111 ( Pt 4), 469–478.PubMedGoogle Scholar
  54. 54.
    Wu, X., Davis, G.E., Meininger, G.A., Wilson, E., and Davis, M.J. (2001). Regulation of the L-type calcium channel by alpha 5beta 1 integrin requires signaling between focal adhesion proteins. J Biol Chem 276, 30285–30292.PubMedCrossRefGoogle Scholar
  55. 55.
    Wu, X., Mogford, J.E., Platts, S.H., Davis, G.E., Meininger, G.A., and Davis, M.J. (1998). Modulation of calcium current in arteriolar smooth muscle by alphav beta3 and alpha5 beta1 integrin ligands. J Cell Biol 143, 241–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysiologyNational University of SingaporeSingaporeSingapore

Personalised recommendations