Skip to main content

Pathways and Signaling Crosstalk with Oxidant in Calcium Influx in Airway Smooth Muscle Cells

  • Chapter
  • First Online:
Calcium Signaling In Airway Smooth Muscle Cells
  • 1004 Accesses

Abstract

Influx of extracellular calcium through calcium channels in the plasma membrane contributes to the sustained phase of [Ca2+]i elevation following agonist stimulation. The interactions between channel proteins like TRPC, STIM1, and Orai1, as well as protein and regulatory molecules including reactive oxygen species (ROSs), have been shown to be involved in the opening of calcium entry channels. The contribution of endogenous hydrogen peroxide (H2O2) to agonist-induced intracellular calcium oscillation was first reported as early as 2002 in vascular endothelial cells. While both the receptor-operated calcium channel and store-operated calcium channel proteins possess cysteine residues, they could also be potential targets of ROSs. Mitochondria-derived H2O2 was shown to work as a cofactor together with STIM1 to mediate histamine-stimulated Ca2+ influx in airway smooth muscle cells. Furthermore, intracellular ROSs can interact with members of transient receptor potential (TRP) superfamilies and contribute to Ca2+ influx. ROS-induced TRP intracellular translocation has been suggested as a critical underlying mechanism of TRP activation, which could be a clue to explain how intracellular ROSs cooperate with STIM1 to mediate Ca2+ influx. The cooperation of ROSs and calcium signaling has magnified physiological or pathological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i :

intracellular calcium concentration

ASMC:

airway smooth muscle cell

SR:

sarcoplasmic reticulum

IP3 :

inositol 1,4,5-trisphosphate

ROS:

reactive oxygen species

VDCC:

voltage-dependent calcium channels

ROC:

receptor-operated calcium channel

SOC:

store-operated calcium channel

CCE:

capacitative Ca2+ entry

PIP2 :

phosphatidylinositol biphosphate

Tg:

thapsigragin

ICRAC :

calcium-release-activated calcium current

TRP:

transient receptor potential

STIM:

stromal interaction molecule

TRPC:

TRP canonical

Trx:

thioredoxin

CRAC:

Ca2+ release-activated channel

SCID:

severe combined immune deficiency

NADPH:

nicotinamide adenine dinucleotide phosphate

RNS:

reactive nitrogen species

RyR:

ryanodine receptor

mtDNA:

mitochondrial DNA

EB:

ethidium bromide

IGF-1:

insulin-like growth factor 1

EGF:

endothelial growth factor

AVP:

arginine vasopressin

VCAM:

vascular cell adhesion molecule

References

  1. Sanders KM (2001) Invited review: mechanisms of calcium handling in smooth muscles. J Appl Physiol 91: 1438–1449.

    PubMed  CAS  Google Scholar 

  2. Worley JF, 3rd, Kotlikoff MI (1990) Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells. Am J Physiol 259: L468–480.

    PubMed  CAS  Google Scholar 

  3. Murray RK, Kotlikoff MI (1991) Receptor-activated calcium influx in human airway smooth muscle cells. J Physiol 435: 123–144.

    PubMed  CAS  Google Scholar 

  4. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77: 901–930.

    PubMed  CAS  Google Scholar 

  5. Cheng KT, Ong HL, Liu X, Ambudkar IS (2011) Contribution of TRPC1 and Orai1 to Ca2+ entry activated by store depletion. Adv Exp Med Biol 704: 435–449.

    Article  PubMed  CAS  Google Scholar 

  6. Chen T, Zhu L, Wang T, Ye H, Huang K, et al. Mitochondria depletion abolishes agonist-induced Ca2+ plateau in airway smooth muscle cells: potential role of H2O2. Am J Physiol Lung Cell Mol Physiol 298: L178–188.

    Google Scholar 

  7. Croxton TL, Fleming C, Hirshman CA (1994) Expression of dihydropyridine resistance differs in porcine bronchial and tracheal smooth muscle. Am J Physiol 267: L106–112.

    PubMed  CAS  Google Scholar 

  8. Janssen LJ (1997) T-type and L-type Ca2+ currents in canine bronchial smooth muscle: characterization and physiological roles. Am J Physiol 272: C1757–1765.

    PubMed  CAS  Google Scholar 

  9. Janssen LJ, Daniel EE (1991) Depolarizing agents induce oscillations in canine bronchial smooth muscle membrane potential: possible mechanisms. J Pharmacol Exp Ther 259: 110–117.

    PubMed  CAS  Google Scholar 

  10. Hall IP (2000) Second messengers, ion channels and pharmacology of airway smooth muscle. Eur Respir J 15: 1120–1127.

    Article  PubMed  CAS  Google Scholar 

  11. Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59: 606–718.

    PubMed  CAS  Google Scholar 

  12. Van Breemen C, Aaronson P, Loutzenhiser R (1978) Sodium-calcium interactions in mammalian smooth muscle. Pharmacol Rev 30: 167–208.

    PubMed  Google Scholar 

  13. de la Fuente G, Palacios O, Villagra E, Villanueva ME (1995) Isolation of Coxsackieviruses B5 in a fatal case of meningoencephalitis. Rev Med Chil 123: 1510–1513.

    PubMed  Google Scholar 

  14. Putney JW, Jr. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7: 1–12.

    Article  PubMed  CAS  Google Scholar 

  15. Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol 317: 263–279.

    PubMed  CAS  Google Scholar 

  16. Ito S, Kume H, Naruse K, Kondo M, Takeda N, et al. (2008) A novel Ca2+ influx pathway activated by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38: 407–413.

    Article  PubMed  CAS  Google Scholar 

  17. Gosling M, Poll C, Li S (2005) TRP channels in airway smooth muscle as therapeutic targets. Naunyn Schmiedebergs Arch Pharmacol 371: 277–284.

    Article  PubMed  CAS  Google Scholar 

  18. Corteling RL, Li S, Giddings J, Westwick J, Poll C, et al. (2004) Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol 30: 145–154.

    Article  PubMed  CAS  Google Scholar 

  19. Jia Y, Wang X, Varty L, Rizzo CA, Yang R, et al. (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287: L272–278.

    Article  PubMed  CAS  Google Scholar 

  20. White TA, Xue A, Chini EN, Thompson M, Sieck GC, et al. (2006) Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol 35: 243–251.

    Article  PubMed  CAS  Google Scholar 

  21. Perez-Zoghbi JF, Karner C, Ito S, Shepherd M, Alrashdan Y, et al. (2009) Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm Pharmacol Ther 22: 388–397.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, et al. (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437: 902–905.

    Article  PubMed  CAS  Google Scholar 

  23. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, et al. (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169: 435–445.

    Article  PubMed  CAS  Google Scholar 

  24. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, et al. (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441: 179–185.

    Article  PubMed  CAS  Google Scholar 

  25. Gwack Y, Sharma S, Nardone J, Tanasa B, Iuga A, et al. (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441: 646–650.

    Article  PubMed  CAS  Google Scholar 

  26. Hogan PG, Lewis RS, Rao A Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28: 491–533.

    Google Scholar 

  27. Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem 283: 12935–12940.

    Article  PubMed  CAS  Google Scholar 

  28. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, et al. (2006) STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels. Nat Cell Biol 8: 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  29. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, et al. (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282: 9105–9116.

    Article  PubMed  CAS  Google Scholar 

  30. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281: 28254–28264.

    Article  PubMed  CAS  Google Scholar 

  31. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9: 636–645.

    Article  PubMed  CAS  Google Scholar 

  32. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, et al. (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32: 439–448.

    Article  PubMed  CAS  Google Scholar 

  33. Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283: 25296–25304.

    Article  PubMed  CAS  Google Scholar 

  34. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, et al. (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104: 4682–4687.

    Article  PubMed  CAS  Google Scholar 

  35. Hu Q, Yu ZX, Ferrans VJ, Takeda K, Irani K, et al. (2002) Critical role of NADPH oxidase-derived reactive oxygen species in generating Ca2+ oscillations in human aortic endothelial cells stimulated by histamine. J Biol Chem 277: 32546–32551.

    Article  PubMed  CAS  Google Scholar 

  36. Hidalgo C, Donoso P (2008) Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 10: 1275–1312.

    Article  PubMed  CAS  Google Scholar 

  37. Bootman MD, Taylor CW, Berridge MJ (1992) The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem 267: 25113–25119.

    PubMed  CAS  Google Scholar 

  38. Hu Q, Zheng G, Zweier JL, Deshpande S, Irani K, et al. (2000) NADPH oxidase activation increases the sensitivity of intracellular Ca2+ stores to inositol 1,4,5-trisphosphate in human endothelial cells. J Biol Chem 275: 15749–15757.

    Article  PubMed  CAS  Google Scholar 

  39. Du W, Frazier M, McMahon TJ, Eu JP (2005) Redox activation of intracellular calcium release channels (ryanodine receptors) in the sustained phase of hypoxia-induced pulmonary vasoconstriction. Chest 128: 556S-558S.

    Article  PubMed  CAS  Google Scholar 

  40. Xi Q, Cheranov SY, Jaggar JH (2005) Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ Res 97: 354–362.

    Article  PubMed  CAS  Google Scholar 

  41. Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 98: 11158–11162.

    Article  PubMed  CAS  Google Scholar 

  42. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279: 234–237.

    Article  PubMed  CAS  Google Scholar 

  43. Porter Moore C, Zhang JZ, Hamilton SL (1999) A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding. J Biol Chem 274: 36831–36834.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang JZ, Wu Y, Williams BY, Rodney G, Mandel F, et al. (1999) Oxidation of the skeletal muscle Ca2+ release channel alters calmodulin binding. Am J Physiol 276: C46–53.

    PubMed  CAS  Google Scholar 

  45. Espinosa A, Leiva A, Pena M, Muller M, Debandi A, et al. (2006) Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol 209: 379–388.

    Article  PubMed  CAS  Google Scholar 

  46. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, et al. (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1: 165–170.

    Article  PubMed  CAS  Google Scholar 

  47. Cayouette S, Boulay G (2007) Intracellular trafficking of TRP channels. Cell Calcium 42: 225–232.

    Article  PubMed  CAS  Google Scholar 

  48. Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, et al. (2003) RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 278: 33492–33500.

    CAS  Google Scholar 

  49. Odell AF, Scott JL, Van Helden DF (2005) Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280: 37974–37987.

    Article  PubMed  CAS  Google Scholar 

  50. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6: 709–720.

    Article  PubMed  CAS  Google Scholar 

  51. Smyth JT, Lemonnier L, Vazquez G, Bird GS, Putney JW, Jr. (2006) Dissociation of regulated trafficking of TRPC3 channels to the plasma membrane from their activation by phospholipase C. J Biol Chem 281: 11712–11720.

    Article  PubMed  CAS  Google Scholar 

  52. Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279: 7241–7246.

    Article  PubMed  CAS  Google Scholar 

  53. Song MY, Makino A, Yuan JX (2011) Role of reactive oxygen species and redox in regulating the function of transient receptor potential channels. Antioxid Redox Signal 15: 1549–1565.

    Article  PubMed  CAS  Google Scholar 

  54. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102: 347–355.

    Article  PubMed  CAS  Google Scholar 

  55. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, et al. (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2: 596–607.

    Article  PubMed  CAS  Google Scholar 

  56. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, et al. (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9: 163–173.

    Article  PubMed  CAS  Google Scholar 

  57. Graham S, Ding M, Ding Y, Sours-Brothers S, Luchowski R, et al. (2010) Canonical transient receptor potential 6 (TRPC6), a redox-regulated cation channel. J Biol Chem 285: 23466–23476.

    Article  PubMed  CAS  Google Scholar 

  58. Ding Y, Winters A, Ding M, Graham S, Akopova I, et al. (2011) Reactive oxygen species-mediated TRPC6 protein activation in vascular myocytes, a mechanism for vasoconstrictor-regulated vascular tone. J Biol Chem 286: 31799–31809.

    Article  PubMed  CAS  Google Scholar 

  59. Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, et al. (2012) Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat Commun 3: 649.

    Article  PubMed  Google Scholar 

  60. Groschner K, Rosker C, Lukas M (2004) Role of TRP channels in oxidative stress. Novartis Found Symp 258: 222–230; discussion 231–225, 263–226.

    Google Scholar 

  61. Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, et al. (1998) Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 437: 101–106.

    Article  PubMed  CAS  Google Scholar 

  62. Poteser M, Graziani A, Rosker C, Eder P, Derler I, et al. (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281: 13588–13595.

    Article  PubMed  CAS  Google Scholar 

  63. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, et al. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272: 217–221.

    CAS  Google Scholar 

  64. Shimoda LA, Undem C (2010) Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia. Respir Physiol Neurobiol 174: 221–229.

    Article  PubMed  CAS  Google Scholar 

  65. Zhu L, Luo Y, Chen T, Chen F, Wang T, et al. (2008) Ca2+ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells. J Cell Sci 121: 2511–2518.

    Article  PubMed  CAS  Google Scholar 

  66. Zhu L, Song S, Pi Y, Yu Y, She W, et al. Cumulated Ca2+ spike duration underlies Ca2+ oscillation frequency-regulated NFkappaB transcriptional activity. J Cell Sci 124: 2591–2601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cai, L., Hu, Q. (2014). Pathways and Signaling Crosstalk with Oxidant in Calcium Influx in Airway Smooth Muscle Cells. In: Wang, YX. (eds) Calcium Signaling In Airway Smooth Muscle Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-01312-1_14

Download citation

Publish with us

Policies and ethics