Advertisement

Role of Caveolae in the Airway

  • Christina M. PabelickEmail author
  • Brij B. Singh
  • Y. S. Prakash
Chapter

Abstract

Caveolae are flask-shaped invaginations of the plasma membrane that are rich in lipids and serve as microdomains to facilitate interactions between proteins at the membrane as well as intracellular components, thus modulating signal transduction, protein and lipid transport, and other processes. Constituent caveolar proteins such as caveolins and cavins also have scaffolding domains that anchor and regulate protein function. There is now evidence that caveolae and their constituent proteins are present in airway smooth muscle in a variety of species. Caveolae in airway cells contain or interact with molecules such as receptors, ion channels, and regulatory proteins that are key to the roles of airway epithelium and smooth muscle in regulating airway structure and function. Furthermore, caveolar protein expression and regulation appear to be important in mediating and modulating the effects of inflammation on the airway, thereby contributing to the pathophysiology of diseases such as asthma.

Keywords

Caveolae Caveolin Cavin Airway 

References

  1. 1.
    Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14: 111–136. DOI 10.1146/annurev.cellbio.14.1.111PubMedCrossRefGoogle Scholar
  2. 2.
    Pike LJ, Han X, Chung KN, Gross RW (2002) Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41: 2075–2088PubMedCrossRefGoogle Scholar
  3. 3.
    Pike LJ (2005) Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochimica et biophysica acta 1746: 260–273. DOI 10.1016/j.bbamcr.2005.05.005PubMedCrossRefGoogle Scholar
  4. 4.
    Thomas CM, Smart EJ (2008) Caveolae structure and function. Journal of cellular and molecular medicine 12: 796–809. DOI 10.1111/j.1582-4934.2008.00295.xPubMedCrossRefGoogle Scholar
  5. 5.
    Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48: 359–391. DOI 10.1146/annurev.pharmtox.48.121506.124841PubMedCrossRefGoogle Scholar
  6. 6.
    Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271: 2255–2261PubMedCrossRefGoogle Scholar
  7. 7.
    Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, Lisanti MP (2002) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277: 8635–8647. DOI 10.1074/jbc.M110970200PubMedCrossRefGoogle Scholar
  8. 8.
    Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S, Hancock JF, Parton RG (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132: 113–124. DOI S0092-8674(07)01546-2 [pii] 10.1016/j.cell.2007.11.042Google Scholar
  9. 9.
    Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, Ravid K, Pilch PF (2008) Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8: 310–317. DOI S1550-4131(08)00242-8 [pii] 10.1016/j.cmet.2008.07.008Google Scholar
  10. 10.
    Cohen AW, Hnasko R, Schubert W, Lisanti MP (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84: 1341–1379. DOI 10.1152/physrev.00046.2003PubMedCrossRefGoogle Scholar
  11. 11.
    Prakash YS, Thompson MA, Vaa B, Matabdin I, Peterson TE, He T, Pabelick CM (2007) Caveolins and intracellular calcium regulation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 293: L1118–1126. DOI 00136.2007 [pii] 10.1152/ajplung.00136.2007Google Scholar
  12. 12.
    Sathish V, Abcejo AJ, Vanoosten SK, Thompson MA, Prakash YS, Pabelick CM (2011) Caveolin-1 in Cytokine-Induced Enhancement of Intracellular Ca2+ in Human Airway Smooth Muscle. Am J Physiol Lung Cell Mol Physiol. DOI ajplung.00019.2011 [pii] 10.1152/ajplung.00019.2011Google Scholar
  13. 13.
    Byrne S, Cheent A, Dimond J, Fisher G, Ockleford CD (2001) Immunocytochemical localization of a caveolin-1 isoform in human term extra-embryonic membranes using confocal laser scanning microscopy: implications for the complexity of the materno-fetal junction. Placenta 22: 499–510. DOI 10.1053/plac.2001.0697S0143-4004(01)90697-6 [pii]Google Scholar
  14. 14.
    Silva WI, Maldonado HM, Lisanti MP, Devellis J, Chompre G, Mayol N, Ortiz M, Velazquez G, Maldonado A, Montalvo J (1999) Identification of caveolae and caveolin in C6 glioma cells. Int J Dev Neurosci 17: 705–714. DOI S0736-5748(99)00040-4 [pii]Google Scholar
  15. 15.
    Sharma P, Ghavami S, Stelmack GL, McNeill KD, Mutawe MM, Klonisch T, Unruh H, Halayko AJ (2010) beta-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. Journal of cell science 123: 3061–3070. DOI 10.1242/jcs.066712PubMedCrossRefGoogle Scholar
  16. 16.
    Aravamudan B, VanOosten SK, Meuchel LW, Vohra P, Thompson M, Sieck GC, Prakash YS, Pabelick CM (2012) Caveolin-1 knockout mice exhibit airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol 303: L669–681. DOI 10.1152/ajplung.00018.2012PubMedCrossRefGoogle Scholar
  17. 17.
    Engelman JA, Zhang XL, Razani B, Pestell RG, Lisanti MP (1999) p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem 274: 32333–32341PubMedCrossRefGoogle Scholar
  18. 18.
    Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP (1999) Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem 274: 15781–15785PubMedCrossRefGoogle Scholar
  19. 19.
    Park WY, Cho KA, Park JS, Kim DI, Park SC (2001) Attenuation of EGF signaling in senescent cells by caveolin. Ann N Y Acad Sci 928: 79–84PubMedCrossRefGoogle Scholar
  20. 20.
    Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H, Jr., Christ GJ, Edelmann W, Lisanti MP (2002) Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Molecular and cellular biology 22: 2329–2344PubMedCrossRefGoogle Scholar
  21. 21.
    Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP (1999) Caveolins, liquid-ordered domains, and signal transduction. Molecular and cellular biology 19: 7289–7304PubMedGoogle Scholar
  22. 22.
    Bist A, Fielding PE, Fielding CJ (1997) Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proceedings of the National Academy of Sciences of the United States of America 94: 10693–10698PubMedCrossRefGoogle Scholar
  23. 23.
    Fielding CJ, Bist A, Fielding PE (1997) Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proceedings of the National Academy of Sciences of the United States of America 94: 3753–3758PubMedCrossRefGoogle Scholar
  24. 24.
    Frank PG, Galbiati F, Volonte D, Razani B, Cohen DE, Marcel YL, Lisanti MP (2001) Influence of caveolin-1 on cellular cholesterol efflux mediated by high-density lipoproteins. American journal of physiology Cell physiology 280: C1204–1214PubMedGoogle Scholar
  25. 25.
    Volonte D, Galbiati F (2011) Polymerase I and transcript release factor (PTRF)/cavin-1 is a novel regulator of stress-induced premature senescence. J Biol Chem 286: 28657–28661. DOI 10.1074/jbc.C111.235119PubMedCrossRefGoogle Scholar
  26. 26.
    Liu L, Pilch PF (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283: 4314–4322. DOI M707890200 [pii] 10.1074/jbc.M707890200Google Scholar
  27. 27.
    Aboulaich N, Chui PC, Asara JM, Flier JS, Maratos-Flier E (2011) Polymerase I and transcript release factor regulates lipolysis via a phosphorylation-dependent mechanism. Diabetes 60: 757–765. DOI 10.2337/db10-0744PubMedCrossRefGoogle Scholar
  28. 28.
    Daniel EE, Eteraf T, Sommer B, Cho WJ, Elyazbi A (2009) The role of caveolae and caveolin 1 in calcium handling in pacing and contraction of mouse intestine. Journal of cellular and molecular medicine 13: 352–364PubMedCrossRefGoogle Scholar
  29. 29.
    Gosens R, Stelmack GL, Dueck G, McNeill KD, Yamasaki A, Gerthoffer WT, Unruh H, Gounni AS, Zaagsma J, Halayko AJ (2006) Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 291: L523–534. DOI 00013.2006 [pii] 10.1152/ajplung.00013.2006Google Scholar
  30. 30.
    Pojoga LH, Adamova Z, Kumar A, Stennett AK, Romero JR, Adler GK, Williams GH, Khalil RA (2010) Sensitivity of NOS-dependent vascular relaxation pathway to mineralocorticoid receptor blockade in caveolin-1-deficient mice. Am J Physiol Heart Circ Physiol 298: H1776–1788PubMedCrossRefGoogle Scholar
  31. 31.
    Poljakovic M, Porter DW, Millecchia L, Kepka-Lenhart D, Beighley C, Wolfarth MG, Castranova V, Morris SM, Jr. (2007) Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation. J Toxicol Environ Health A 70: 118–127. DOI 769176703 [pii] 10.1080/15287390600755075Google Scholar
  32. 32.
    Darby PJ, Kwan CY, Daniel EE (2000) Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca2+ handling. Am J Physiol Lung Cell Mol Physiol 279: L1226–1235PubMedGoogle Scholar
  33. 33.
    Hunter I, Nixon GF (2006) Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J Biol Chem 281: 34705–34715. DOI M605738200 [pii] 10.1074/jbc.M605738200Google Scholar
  34. 34.
    Sathish V, Abcejo AJ, Thompson MA, Sieck GC, Prakash YS, Pabelick CM (2012) Caveolin-1 regulation of store-operated Ca2+ influx in human airway smooth muscle. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 40: 470–478. DOI 10.1183/09031936.00090511CrossRefGoogle Scholar
  35. 35.
    Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996) Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proceedings of the National Academy of Sciences of the United States of America 93: 6448–6453PubMedCrossRefGoogle Scholar
  36. 36.
    Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272: 18522–18525PubMedCrossRefGoogle Scholar
  37. 37.
    Sathish V, Yang B, Meuchel LW, VanOosten SK, Ryu AJ, Thompson MA, Prakash YS, Pabelick CM (2011) Caveolin-1 and force regulation in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 300: L920–929. DOI ajplung.00322.2010 [pii] 10.1152/ajplung.00322.2010Google Scholar
  38. 38.
    Lisanti MP, Scherer PE, Tang Z, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4: 231–235PubMedCrossRefGoogle Scholar
  39. 39.
    Oka N, Yamamoto M, Schwencke C, Kawabe J, Ebina T, Ohno S, Couet J, Lisanti MP, Ishikawa Y (1997) Caveolin interaction with protein kinase C. Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem 272: 33416–33421Google Scholar
  40. 40.
    Shakirova Y, Bonnevier J, Albinsson S, Adner M, Rippe B, Broman J, Arner A, Sward K (2006) Increased Rho activation and PKC-mediated smooth muscle contractility in the absence of caveolin-1. American journal of physiology Cell physiology 291: C1326–1335. DOI 10.1152/ajpcell.00046.2006PubMedCrossRefGoogle Scholar
  41. 41.
    Vinten J, Johnsen AH, Roepstorff P, Harpoth J, Tranum-Jensen J (2005) Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta 1717: 34–40. DOI S0005-2736(05)00285-3 [pii] 10.1016/j.bbamem.2005.09.013Google Scholar
  42. 42.
    Hansen CG, Bright NA, Howard G, Nichols BJ (2009) SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11: 807–814. DOI ncb1887 [pii]10.1038/ncb1887Google Scholar
  43. 43.
    McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ, Luby-Phelps K, Anderson RG (2009) SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28: 1001–1015. DOI emboj200946 [pii] 10.1038/emboj.2009.46Google Scholar
  44. 44.
    Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP, Abankwa D, Luetterforst R, Fernandez-Rojo M, Breen MR, Gygi SP, Vinten J, Walser PJ, North KN, Hancock JF, Pilch PF, Parton RG (2009) MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 185: 1259–1273. DOI jcb.200903053 [pii] 10.1083/jcb.200903053Google Scholar
  45. 45.
    Ogata T, Ueyama T, Isodono K, Tagawa M, Takehara N, Kawashima T, Harada K, Takahashi T, Shioi T, Matsubara H, Oh H (2008) MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol 28: 3424–3436. DOI MCB.02186-07 [pii] 10.1128/MCB.02186-07Google Scholar
  46. 46.
    Sharma P, Ghavami S, Stelmack GL, McNeill KD, Mutawe MM, Klonisch T, Unruh H, Halayko AJ (2010) beta-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. J Cell Sci 123: 3061–3070. DOI jcs.066712 [pii] 10.1242/jcs.066712Google Scholar
  47. 47.
    Garrean S, Gao XP, Brovkovych V, Shimizu J, Zhao YY, Vogel SM, Malik AB (2006) Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol 177: 4853–4860. DOI 177/7/4853 [pii]Google Scholar
  48. 48.
    Hunter I, Nixon GF (2006) Spatial compartmentalization of TNFR1-dependent signaling pathways in human airway smooth muscle cells: lipid rafts are essential for TNF-alpha -mediated activation of RhoA but dispensable for the activation of the NF-kappa B and MAPK pathways. J Biol Chem 281: 34705–34715PubMedCrossRefGoogle Scholar
  49. 49.
    Le Saux CJ, Teeters K, Miyasato SK, Hoffmann PR, Bollt O, Douet V, Shohet RV, Broide DH, Tam EK (2008) Down-regulation of caveolin-1, an inhibitor of transforming growth factor-beta signaling, in acute allergen-induced airway remodeling. J Biol Chem 283: 5760–5768. DOI M701572200 [pii] 10.1074/jbc.M701572200Google Scholar
  50. 50.
    Sommer B, Montano LM, Carbajal V, Flores-Soto E, Ortega A, Ramirez-Oseguera R, Irles C, El-Yazbi AF, Cho WJ, Daniel EE (2009) Extraction of membrane cholesterol disrupts caveolae and impairs serotonergic (5-HT2A) and histaminergic (H1) responses in bovine airway smooth muscle: role of Rho-kinase. Can J Physiol Pharmacol 87: 180–195. DOI y08-114 [pii] 10.1139/y08-114Google Scholar
  51. 51.
    Hotta K, Emala CW, Hirshman CA (1999) TNF-alpha upregulates Gialpha and Gqalpha protein expression and function in human airway smooth muscle cells. American Journal of Physiology 276: L405–411PubMedGoogle Scholar
  52. 52.
    Oenema TA, Kolahian S, Nanninga JE, Rieks D, Hiemstra PS, Zuyderduyn S, Halayko AJ, Meurs H, Gosens R (2010) Pro-inflammatory mechanisms of muscarinic receptor stimulation in airway smooth muscle. Respir Res 11: 130. DOI 1465-9921-11-130 [pii] 10.1186/1465-9921-11-130Google Scholar
  53. 53.
    White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME (2006) Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol 35: 243–251. DOI 2006-0003OC [pii]10.1165/rcmb.2006-0003OCGoogle Scholar
  54. 54.
    El-Yazbi AF, Cho WJ, Schulz R, Daniel EE (2008) Calcium extrusion by plasma membrane calcium pump is impaired in caveolin-1 knockout mouse small intestine. European journal of pharmacology 591: 80–87PubMedCrossRefGoogle Scholar
  55. 55.
    Shakirova Y, Mori M, Ekman M, Erjefalt J, Uvelius B, Sward K (2010) Human urinary bladder smooth muscle is dependent on membrane cholesterol for cholinergic activation. European journal of pharmacology 634: 142–148PubMedCrossRefGoogle Scholar
  56. 56.
    Polyak E, Boopathi E, Mohanan S, Deng M, Zderic SA, Wein AJ, Chacko S (2009) Alterations in caveolin expression and ultrastructure after bladder smooth muscle hypertrophy. J Urol 182: 2497–2503. DOI S0022-5347(09)01735-2 [pii] 10.1016/j.juro.2009.07.011Google Scholar
  57. 57.
    Chidlow JH, Jr., Sessa WC (2010) Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 86: 219–225. DOI cvq075 [pii] 10.1093/cvr/cvq075Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christina M. Pabelick
    • 1
    • 2
    Email author
  • Brij B. Singh
    • 3
  • Y. S. Prakash
    • 1
    • 2
  1. 1.Department of AnesthesiologyMayo ClinicRochesterUSA
  2. 2.Department of Physiology and Biomedical EngineeringMayo ClinicRochesterUSA
  3. 3.Department of Biochemistry and Molecular Biology, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksUSA

Personalised recommendations