The Role of Mitochondria in Calcium Regulation in Airway Smooth Muscle

  • Philippe Delmotte
  • Li Jia
  • Gary C. SieckEmail author


Excitation–contraction coupling represents a cascade of events that connects the initiating signal, an elevation of cytosolic Ca2+ concentration ([Ca2+]cyt), with the ensuing cross-bridge recruitment and cycling that underlies ATP-consuming mechanical work. Mitochondria are the power plant of the cell. An elevation in [Ca2+]cyt is followed by an increase in mitochondrial Ca2+ ([Ca2+]mito). Moreover, an increase in [Ca2+]mito leads to an increase in ATP production. Therefore, the relationship between elevations in [Ca2+]cyt and [Ca2+]mito reflects a coupling between energy demand and energy supply. Accordingly, mitochondrial Ca2+ regulation mediates excitation–energy coupling in ASM. To this end, mitochondrial movement within ASM cells may help couple ATP production to localized differences in energy demand.


Excitation–Contraction Coupling ATP Metabolism Mitochondrial Ca2+ Cytosolic Ca2+ 


  1. 1.
    Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I (2009) Mitochondrial dysfunction increases allergic airway inflammation. J Immunol 183:5379–5387.PubMedGoogle Scholar
  2. 2.
    Anesti V, Scorrano L (2006) The relationship between mitochondrial shape and function and the cytoskeleton. Biochim Biophys Acta 1757:692–699.PubMedGoogle Scholar
  3. 3.
    Ay B, Prakash YS, Pabelick CM, Sieck GC (2004) Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:909–917.Google Scholar
  4. 4.
    Balemba OB, Bartoo AC, Nelson MT, Mawe GM (2008) Role of mitochondria in spontaneous rhythmic activity and intracellular calcium waves in the guinea pig gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol 294:467–476.Google Scholar
  5. 5.
    Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345.PubMedGoogle Scholar
  6. 6.
    Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848.PubMedGoogle Scholar
  7. 7.
    Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586:5047–5061.PubMedGoogle Scholar
  8. 8.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21.PubMedGoogle Scholar
  9. 9.
    Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854.PubMedGoogle Scholar
  10. 10.
    Boldogh IR, Pon LA (2007) Mitochondria on the move. Trends Cell Biol 17:502–510.PubMedGoogle Scholar
  11. 11.
    Bose S, French S, Evans FJ, Joubert F, Balaban RS (2003) Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate. J Biol Chem 278:39155–39165.PubMedGoogle Scholar
  12. 12.
    Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33:755–764.PubMedGoogle Scholar
  13. 13.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:817–833.Google Scholar
  14. 14.
    Brough D, Schell MJ, Irvine RF (2005) Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. Biochem J 392:291–297.PubMedGoogle Scholar
  15. 15.
    Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13.PubMedGoogle Scholar
  16. 16.
    Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677.PubMedGoogle Scholar
  17. 17.
    Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797:595–606.PubMedGoogle Scholar
  18. 18.
    Chalmers S, McCarron JG (2008) The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle. J Cell Sci 121:75–85.PubMedGoogle Scholar
  19. 19.
    Chalmers S, McCarron JG (2009) Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors. Cell Calcium 46:107–113.PubMedGoogle Scholar
  20. 20.
    Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393.Google Scholar
  21. 21.
    Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134.PubMedGoogle Scholar
  22. 22.
    Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14:283–289.Google Scholar
  23. 23.
    Chen T, Zhu L, Wang T, Ye H, Huang K, Hu Q (2010) Mitochondria depletion abolishes agonist-induced Ca2+ plateau in airway smooth muscle cells: potential role of H2O2. Am J Physiol Lung Cell Mol Physiol 298:178–188.Google Scholar
  24. 24.
    Cheranov SY, Jaggar JH (2004) Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol 556:755–771.PubMedGoogle Scholar
  25. 25.
    Collins TJ, Lipp P, Berridge MJ, Li W, Bootman MD (2000) Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization. Biochem J 347:593–600.PubMedGoogle Scholar
  26. 26.
    Crompton M, Capano M, Carafoli E (1976) Respiration-dependent efflux of magnesium ions from heart mitochondria. Biochem J 154:735–742.PubMedGoogle Scholar
  27. 27.
    Crompton M, Heid I (1978) The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem 91:599–608.PubMedGoogle Scholar
  28. 28.
    Crompton M, Moser R, Ludi H, Carafoli E (1978) The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem 82:25–31.PubMedGoogle Scholar
  29. 29.
    Dai J, Kuo KH, Leo JM, van Breemen C, Lee CH (2005) Rearrangement of the close contact between the mitochondria and the sarcoplasmic reticulum in airway smooth muscle. Cell Calcium 37:333–340.PubMedGoogle Scholar
  30. 30.
    De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340.PubMedGoogle Scholar
  31. 31.
    De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP (2005) Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 15:678–683.PubMedGoogle Scholar
  32. 32.
    Delmotte P, Yang B, Thompson MA, Pabelick CM, Prakash YS, Sieck GC (2012) Inflammation alters regional mitochondrial Ca2+ in human airway smooth muscle cells. Am J Physiol Cell Physiol 303:244–256.Google Scholar
  33. 33.
    Demaurex N, Poburko D (2009) Cell biology. A revolving door for calcium. Science 326:57–58.Google Scholar
  34. 34.
    Demaurex N, Poburko D, Frieden M (2009) Regulation of plasma membrane calcium fluxes by mitochondria. Biochim Biophys Acta 1787:1383–1394.PubMedGoogle Scholar
  35. 35.
    Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316.PubMedGoogle Scholar
  36. 36.
    Drago I, Pizzo P, Pozzan T (2011) After half a century mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J 30:4119–4125.PubMedGoogle Scholar
  37. 37.
    Duchen MR (2000a) Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium 28:339–348.PubMedGoogle Scholar
  38. 38.
    Duchen MR (2000b) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68.PubMedGoogle Scholar
  39. 39.
    Favero TG, Zable AC, Abramson JJ (1995) Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem 270:25557–25563.PubMedGoogle Scholar
  40. 40.
    Filippin L, Magalhaes PJ, Di Benedetto G, Colella M, Pozzan T (2003) Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 278:39224–39234.PubMedGoogle Scholar
  41. 41.
    Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922.PubMedGoogle Scholar
  42. 42.
    Fredberg JJ (2004) Bronchospasm and its biophysical basis in airway smooth muscle. Respir Res 5:2.PubMedGoogle Scholar
  43. 43.
    Frischauf I, Schindl R, Derler I, Bergsmann J, Fahrner M, Romanin C (2008) The STIM/Orai coupling machinery. Channels (Austin) 2:261–268.Google Scholar
  44. 44.
    Galloway CA, Yoon Y (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: what comes first, misshape or dysfunction? The view from metabolic excess. J Gen Physiol 139:455–463.PubMedGoogle Scholar
  45. 45.
    Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290.PubMedGoogle Scholar
  46. 46.
    Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51:2959–2973.PubMedGoogle Scholar
  47. 47.
    Glitsch MD, Bakowski D, Parekh AB (2002) Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. Embo J 21:6744–6754.PubMedGoogle Scholar
  48. 48.
    Gosling M, Poll C, Li S (2005) TRP channels in airway smooth muscle as therapeutic targets. Naunyn Schmiedebergs Arch Pharmacol 371:277–284.PubMedGoogle Scholar
  49. 49.
    Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:755–786.Google Scholar
  50. 50.
    Gunter TE, Sheu SS (2009) Characteristics and possible functions of mitochondrial Ca2+ transport mechanisms. Biochim Biophys Acta 1787:1291–1308.PubMedGoogle Scholar
  51. 51.
    Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102.PubMedGoogle Scholar
  52. 52.
    Halestrap AP (1989) The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta 973:355–382.PubMedGoogle Scholar
  53. 53.
    Halestrap AP, Quinlan PT, Whipps DE, Armston AE (1986) Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium. Biochem J 236:779–787.PubMedGoogle Scholar
  54. 54.
    Hall IP (2000) Second messengers, ion channels and pharmacology of airway smooth muscle. Eur Respir J 15:1120–1127.PubMedGoogle Scholar
  55. 55.
    Hawkins BJ, Irrinki KM, Mallilankaraman K, Lien YC, Wang Y, Bhanumathy CD, Subbiah R, Ritchie MF, Soboloff J, Baba Y, Kurosaki T, Joseph SK, Gill DL, Madesh M (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190:391–405.PubMedGoogle Scholar
  56. 56.
    Hernandez-SanMiguel E, Vay L, Santo-Domingo J, Lobaton CD, Moreno A, Montero M, Alvarez J (2006) The mitochondrial Na+/Ca2+ exchanger plays a key role in the control of cytosolic Ca2+ oscillations. Cell Calcium 40:53–61.PubMedGoogle Scholar
  57. 57.
    Hirota S, Janssen LJ (2007) Store-refilling involves both L-type calcium channels and reverse-mode sodium-calcium exchange in airway smooth muscle. Eur Respir J 30:269–278.PubMedGoogle Scholar
  58. 58.
    Hoppe UC (2010) Mitochondrial calcium channels. FEBS Lett 584:1975–1981.PubMedGoogle Scholar
  59. 59.
    Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci U S A 97:10607–10612.PubMedGoogle Scholar
  60. 60.
    Isaeva EV, Shirokova N (2003) Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol 547:453–462.PubMedGoogle Scholar
  61. 61.
    Ishii K, Hirose K, Iino M (2006) Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep 7:390–396.PubMedGoogle Scholar
  62. 62.
    Janssen LJ (2002) Ionic mechanisms and Ca2+ regulation in airway smooth muscle contraction: do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 282:1161–1178.Google Scholar
  63. 63.
    Janssen LJ, Walters DK, Wattie J (1997) Regulation of [Ca2+]i in canine airway smooth muscle by Ca2+-ATPase and Na+/Ca2+ exchange mechanisms. Am J Physiol 273:322–330.Google Scholar
  64. 64.
    Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68.PubMedGoogle Scholar
  65. 65.
    Jones KA, Lorenz RR, Prakash YS, Sieck GC, Warner DO (1999) ATP hydrolysis during contraction of permeabilized airway smooth muscle. Am J Physiol 277:334–342.Google Scholar
  66. 66.
    Jousset H, Malli R, Girardin N, Graier WF, Demaurex N, Frieden M (2008) Evidence for a receptor-activated Ca2+ entry pathway independent from Ca2+ store depletion in endothelial cells. Cell Calcium 43:83–94.PubMedGoogle Scholar
  67. 67.
    Jude JA, Wylam ME, Walseth TF, Kannan MS (2008) Calcium signaling in airway smooth muscle. Proc Am Thorac Soc 5:15–22.PubMedGoogle Scholar
  68. 68.
    Kannan MS, Fenton AM, Prakash YS, Sieck GC (1996) Cyclic ADP-ribose stimulates sarcoplasmic reticulum calcium release in porcine coronary artery smooth muscle. Am J Physiol 270:801–806.Google Scholar
  69. 69.
    Kannan MS, Prakash YS, Brenner T, Mickelson JR, Sieck GC (1997) Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle. Am J Physiol 272:659–664.Google Scholar
  70. 70.
    Kanwar YS, Sun L (2008) Shuttling of calcium between endoplasmic reticulum and mitochondria in the renal vasculature. Am J Physiol Renal Physiol 295:1301–1302.Google Scholar
  71. 71.
    Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1:165–170.PubMedGoogle Scholar
  72. 72.
    Lin MJ, Yang XR, Cao YN, Sham JS (2007) Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292:1598–1608.Google Scholar
  73. 73.
    Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE, Jr., Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241.PubMedGoogle Scholar
  74. 74.
    Liu B, Peel SE, Fox J, Hall IP (2010) Reverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation. Respir Res 11:168.PubMedGoogle Scholar
  75. 75.
    Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK, Ghosh B (2008) Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol 181:3540–3548.PubMedGoogle Scholar
  76. 76.
    Mahn K, Ojo OO, Chadwick G, Aaronson PI, Ward JP, Lee TH (2010) Ca2+ homeostasis and structural and functional remodelling of airway smooth muscle in asthma. Thorax 65:547–552.PubMedGoogle Scholar
  77. 77.
    Malaiyandi LM, Honick AS, Rintoul GL, Wang QJ, Reynolds IJ (2005) Zn2+ inhibits mitochondrial movement in neurons by phosphatidylinositol 3-kinase activation. J Neurosci 25:9507–9514.PubMedGoogle Scholar
  78. 78.
    Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, store-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779.PubMedGoogle Scholar
  79. 79.
    Marin J, Encabo A, Briones A, Garcia-Cohen EC, Alonso MJ (1999) Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps. Life Sci 64:279–303.PubMedGoogle Scholar
  80. 80.
    Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J Biol Chem 273:10223–10231.PubMedGoogle Scholar
  81. 81.
    Mignen O, Shuttleworth TJ (2000) I(ARC), a novel arachidonate-regulated, noncapacitative Ca2+ entry channel. J Biol Chem 275:9114–9119.PubMedGoogle Scholar
  82. 82.
    Montero M, Alonso MT, Carnicero E, Cuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61.PubMedGoogle Scholar
  83. 83.
    Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022.PubMedGoogle Scholar
  84. 84.
    Munoz E, Valero RA, Quintana A, Hoth M, Nunez L, Villalobos C (2011) Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/orai channels normally prevented by mitochondria. J Biol Chem 286:16186–16196.PubMedGoogle Scholar
  85. 85.
    Murray RK, Fleischmann BK, Kotlikoff MI (1993) Receptor-activated Ca influx in human airway smooth muscle: use of Ca imaging and perforated patch-clamp techniques. Am J Physiol 264:485–490.Google Scholar
  86. 86.
    Murray RK, Kotlikoff MI (1991) Receptor-activated calcium influx in human airway smooth muscle cells. J Physiol 435:123–144.PubMedGoogle Scholar
  87. 87.
    Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R (2010) Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 123:2553–2564.PubMedGoogle Scholar
  88. 88.
    Otera H, Mihara K (2011) Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem 149:241–251.PubMedGoogle Scholar
  89. 89.
    Pabelick CM, Ay B, Prakash YS, Sieck GC (2004) Effects of volatile anesthetics on store-operated Ca2+ influx in airway smooth muscle. Anesthesiology 101:373–380.PubMedGoogle Scholar
  90. 90.
    Pabelick CM, Prakash YS, Kannan MS, Sieck GC (1999) Spatial and temporal aspects of calcium sparks in porcine tracheal smooth muscle cells. Am J Physiol 277:1018–1025.Google Scholar
  91. 91.
    Pabelick CM, Sieck GC, Prakash YS (2001) Invited review: significance of spatial and temporal heterogeneity of calcium transients in smooth muscle. J Appl Physiol 91:488–496.PubMedGoogle Scholar
  92. 92.
    Pacher P, Thomas AP, Hajnoczky G (2002) Ca2+ marks: miniature calcium signals in single mitochondria driven by ryanodine receptors. Proc Natl Acad Sci U S A 99:2380–2385.PubMedGoogle Scholar
  93. 93.
    Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F (2001) Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20:5060–5069.PubMedGoogle Scholar
  94. 94.
    Palty R, Sekler I (2012) The mitochondrial Na+/Ca2+ exchanger. Cell Calcium 52:9–15.PubMedGoogle Scholar
  95. 95.
    Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107:436–441.PubMedGoogle Scholar
  96. 96.
    Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547:333–348.PubMedGoogle Scholar
  97. 97.
    Parekh AB, Putney JW, Jr. (2005) Store-operated calcium channels. Physiol Rev 85:757–810.PubMedGoogle Scholar
  98. 98.
    Park KS, Jo I, Pak K, Bae SW, Rhim H, Suh SH, Park J, Zhu H, So I, Kim KW (2002) FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells. Pflugers Arch 443:344–352.PubMedGoogle Scholar
  99. 99.
    Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20:1863–1874.PubMedGoogle Scholar
  100. 100.
    Parker NJ, Begley CG, Smith PJ, Fox RM (1996) Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37:253–256.PubMedGoogle Scholar
  101. 101.
    Patterson RL, van Rossum DB, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98:487–499.PubMedGoogle Scholar
  102. 102.
    Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252.PubMedGoogle Scholar
  103. 103.
    Peel SE, Liu B, Hall IP (2008) ORAI and store-operated calcium influx in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38:744–749.PubMedGoogle Scholar
  104. 104.
    Perez-Vizcaino F, Cogolludo A, Moreno L (2010) Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir Physiol Neurobiol 174:212–220.PubMedGoogle Scholar
  105. 105.
    Prakash YS, Kannan MS, Sieck GC (1997) Regulation of intracellular calcium oscillations in porcine tracheal smooth muscle cells. Am J Physiol 272:966–975.Google Scholar
  106. 106.
    Prakash YS, Kannan MS, Walseth TF, Sieck GC (1998) Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am J Physiol 274:1653–1660.Google Scholar
  107. 107.
    Prakash YS, Pabelick CM, Kannan MS, Sieck GC (2000) Spatial and temporal aspects of ACh-induced [Ca2+]i oscillations in porcine tracheal smooth muscle. Cell Calcium 27:153–162.PubMedGoogle Scholar
  108. 108.
    Prakash YS, Sathish V, Thompson MA, Pabelick CM, Sieck GC (2009) Asthma and sarcoplasmic reticulum Ca2+ reuptake in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 297:794.Google Scholar
  109. 109.
    Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233.PubMedGoogle Scholar
  110. 110.
    Prasad GS, McRee DE, Stura EA, Levitt DG, Lee HC, Stout CD (1996) Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nat Struct Biol 3:957–964.PubMedGoogle Scholar
  111. 111.
    Raeymaekers L, Hofmann F, Casteels R (1988) Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. Biochem J 252:269–273.PubMedGoogle Scholar
  112. 112.
    Raeymaekers L, Jones LR (1986) Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle. Biochim Biophys Acta 882:258–265.PubMedGoogle Scholar
  113. 113.
    Raffaello A, De Stefani D, Rizzuto R (2012) The mitochondrial Ca2+ uniporter. Cell Calcium 52:16–21.PubMedGoogle Scholar
  114. 114.
    Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647.PubMedGoogle Scholar
  115. 115.
    Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445.PubMedGoogle Scholar
  116. 116.
    Roux E, Marhl M (2004) Role of sarcoplasmic reticulum and mitochondria in Ca2+ removal in airway myocytes. Biophys J 86:2583–2595.PubMedGoogle Scholar
  117. 117.
    Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T (2004) In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536.PubMedGoogle Scholar
  118. 118.
    Sandow A (1952) Excitation-contraction coupling in muscular response. Yale J Biol Med 25:176–201.PubMedGoogle Scholar
  119. 119.
    Sathish V, Abcejo AJ, Thompson MA, Sieck GC, Prakash YS, Pabelick CM (2012) Caveolin-1 regulation of store-operated Ca2+ influx in human airway smooth muscle. Eur Respir J 40:470–478.PubMedGoogle Scholar
  120. 120.
    Sathish V, Delmotte PF, Thompson MA, Pabelick CM, Sieck GC, Prakash YS (2011) Sodium-calcium exchange in intracellular calcium handling of human airway smooth muscle. PLoS One 6:e23662.PubMedGoogle Scholar
  121. 121.
    Sathish V, Leblebici F, Kip SN, Thompson MA, Pabelick CM, Prakash YS, Sieck GC (2008) Regulation of sarcoplasmic reticulum Ca2+ reuptake in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 294:787–796.Google Scholar
  122. 122.
    Sathish V, Thompson MA, Bailey JP, Pabelick CM, Prakash YS, Sieck GC (2009) Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 297:26–34.Google Scholar
  123. 123.
    Sieck GC, Gransee HM (2012) Respiratory muscles structure, function & regulation (Colloquium series on integrated systems physiology, from molecule to function to disease). Morgan and Claypool Life Sciences, San Rafael.Google Scholar
  124. 124.
    Sieck GC, Han YS, Pabelick CM, Prakash YS (2001) Temporal aspects of excitation-contraction coupling in airway smooth muscle. J Appl Physiol 91:2266–2274.PubMedGoogle Scholar
  125. 125.
    Sieck GC, Kannan MS, Prakash YS (1997) Heterogeneity in dynamic regulation of intracellular calcium in airway smooth muscle cells. Can J Physiol Pharmacol 75:878–888.PubMedGoogle Scholar
  126. 126.
    Sieck GC, Prakash YS, Han YS, Kannan MS (1999) Airway smooth muscle excitation-contraction coupling. Biophys J 76:A285–A285.Google Scholar
  127. 127.
    Sieck GC, White TA, Thompson MA, Pabelick CM, Wylam ME, Prakash YS (2008) Regulation of store-operated Ca2+ entry by CD38 in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 294:378–385.Google Scholar
  128. 128.
    Singaravelu K, Nelson C, Bakowski D, de Brito OM, Ng SW, Di Capite J, Powell T, Scorrano L, Parekh AB (2011) Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. J Biol Chem 286:12189–12201.PubMedGoogle Scholar
  129. 129.
    Slater EC, Cleland KW (1953) The effect of calcium on the respiratory and phosphorylative activities of heart-muscle sarcosomes. Biochem J 55:566–590.PubMedGoogle Scholar
  130. 130.
    Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349.PubMedGoogle Scholar
  131. 131.
    Somlyo AP, Somlyo AV (2000) Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 522:177–185.PubMedGoogle Scholar
  132. 132.
    Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16:59–68.PubMedGoogle Scholar
  133. 133.
    Szado T, Kuo KH, Bernard-Helary K, Poburko D, Lee CH, Seow C, Ruegg UT, van Breemen C (2003) Agonist-induced mitochondrial Ca2+ transients in smooth muscle. FASEB J 17:28–37.PubMedGoogle Scholar
  134. 134.
    Tada M, Katz AM (1982) Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol 44:401–423.PubMedGoogle Scholar
  135. 135.
    To MS, Aromataris EC, Castro J, Roberts ML, Barritt GJ, Rychkov GY (2010) Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca2+ current in liver cells. Arch Biochem Biophys 495:152–158.PubMedGoogle Scholar
  136. 136.
    Trian T, Benard G, Begueret H, Rossignol R, Girodet PO, Ghosh D, Ousova O, Vernejoux JM, Marthan R, Tunon-de-Lara JM, Berger P (2007) Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med 204:3173–3181.PubMedGoogle Scholar
  137. 137.
    Varadi A, Cirulli V, Rutter GA (2004) Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. Cell Calcium 36:499–508.PubMedGoogle Scholar
  138. 138.
    Vasington FD, Murphy JV (1962) Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem 237:2670–2677.PubMedGoogle Scholar
  139. 139.
    Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB, Kotlikoff MI (2004) FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am J Physiol Cell Physiol 286:538–546.Google Scholar
  140. 140.
    White TA, Kannan MS, Walseth TF (2003) Intracellular calcium signaling through the cADPR pathway is agonist specific in porcine airway smooth muscle. FASEB J 17:482–484.PubMedGoogle Scholar
  141. 141.
    White TA, Xue AL, Chini EN, Thompson M, Sieck GC, Wylam ME (2006) Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Resp Cell Mol 35:243–251.Google Scholar
  142. 142.
    Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, Smith PJ, Dziadek MA (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685.PubMedGoogle Scholar
  143. 143.
    Worley JF, 3rd, Kotlikoff MI (1990) Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells. Am J Physiol 259:468–480.Google Scholar
  144. 144.
    Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672.PubMedGoogle Scholar
  145. 145.
    Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterUSA

Personalised recommendations