Ryanodine and Inositol Trisphosphate Receptors/Ca2+ Release Channels in Airway Smooth Muscle Cells

  • Lin Mei
  • Yun-Min ZhengEmail author
  • Yong-Xiao WangEmail author


Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are the most important Ca2+ release channels on the sarcoplasmic (or endoplasmic) reticulum (SR) in almost all types of cells. In the past several decades, the studies of RyRs and IP3Rs have greatly facilitated our understanding of the physiological functions and pathological mechanisms for various diseases including heart failure, arrhythmias, myopathy, and seizure. Similarly, their important roles have been explored in airway smooth muscle cells (SMCs). These two receptors control intracellular Ca2+ release and modulate extracellular Ca2+ influx, thereby playing an essential role in cell contraction, relaxation, proliferation, migration, metabolism, and, ultimately, cell fate. The abnormality of Ca2+ signaling in airway SMCs may contribute to the development of multiple lung diseases, notably asthma. Concomitantly, many regulators, including Ca2+ itself, calmodulin, protein kinases, FK506-binding protein 12.6 (FKBP12.6), cyclic adenosine diphosphate ribose (cADPR), and redox status, are involved in the regulation of Ca2+ signaling and, thus, the physiological function and pathological alterations. The two SR Ca2+ release channels may also directly or indirectly interact with plasmalemmal and mitochondrial ion channels such as transient receptor potential cation, big-conductance Ca2+-activated K+, Ca2+-activated Cl, and other channels, providing positive or negative feedback mechanisms to control Ca2+ signaling and cellular functions.


Ryanodine receptor Inositol 1,4,5-trisphosphate receptor Intracellular Ca2+ release Extracellular Ca2+ influx Big-conductance Ca2+-activated K+ channel Ca2+-activated Cl channel 







Big-conductance Ca2+-activated K+ channel


Cyclic adenosine diphosphate ribose


Calmodulin-dependent protein kinase II


Ca2+-induced Ca2+ release


Ca2+-activated Cl channel


Catecholaminergic polymorphic ventricular tachycardia




FK506-binding protein 12.6


Glutathione peroxidase-1


Hydrogen peroxide




Inositol 1,4,5-trisphosphate receptors


cGMP kinase substrate


L-type voltage-gated Ca2+ channels


Leukotriene D4


Muscarinic M3 receptor




Myosin light chain


Myosin light chain kinase


Myosin light chain phosphatase


Mammalian target of rapamycin


Na+/Ca2+ exchanger


Nitric oxide


Nonselective cation channels


Phosphatidylinositol 3 kinases


Phosphatidylinositol 4 5-bisphosphate


Protein kinase A


Protein kinase C


cGMP-dependent protein kinase


Phospholipase C


Reactive oxygen species


Ryanodine receptor


Sarcoplasmic reticulum Ca2+ ATPase


Smooth muscle cell


Store-operated calcium entry


Sarcoplasmic reticulum


Spontaneous transient inward current


Spontaneous transient outward current


Tumor necrosis factor-α


Transient receptor potential channel


Voltage-induced Ca2+ release


  1. 1.
    Kushnir A, Marks AR. The ryanodine receptor in cardiac physiology and disease. Adv Pharmacol. 2010;59:1–30PubMedCrossRefGoogle Scholar
  2. 2.
    Zheng YM, Wang YX. Ryanodine receptors/Ca2+ release channels in pulmonary artery smooth muscle cells. Recent Advances in Pulmonary Vascular Biology. Trivandrum: Research Signpost. 2011:91–114Google Scholar
  3. 3.
    Zalk R, Lehnart SE, Marks AR. Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem. 2007;76:367–385PubMedCrossRefGoogle Scholar
  4. 4.
    Michikawa T, Hamanaka H, Otsu H, Yamamoto A, Miyawaki A, Furuichi T, Tashiro Y, Mikoshiba K. Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994;269:9184–9189PubMedGoogle Scholar
  5. 5.
    Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol. 2012;302:H2190–2210PubMedCrossRefGoogle Scholar
  6. 6.
    Jude JA, Wylam ME, Walseth TF, Kannan MS. Calcium signaling in airway smooth muscle. Proc Am Thorac Soc. 2008;5:15–22PubMedCrossRefGoogle Scholar
  7. 7.
    Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–529PubMedCrossRefGoogle Scholar
  8. 8.
    Vukcevic M, Broman M, Islander G, Bodelsson M, Ranklev-Twetman E, Muller CR, Treves S. Functional properties of RyR1 mutations identified in swedish patients with malignant hyperthermia and central core disease. Anesth Analg. 2010;111:185–190PubMedGoogle Scholar
  9. 9.
    Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol. 2010;2:a003996PubMedCrossRefGoogle Scholar
  10. 10.
    Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995;128:893–904PubMedCrossRefGoogle Scholar
  11. 11.
    Du W, Stiber JA, Rosenberg PB, Meissner G, Eu JP. Ryanodine receptors in muscarinic receptor-mediated bronchoconstriction. J Biol Chem. 2005;280:26287–26294PubMedCrossRefGoogle Scholar
  12. 12.
    Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007;87:593–658PubMedCrossRefGoogle Scholar
  13. 13.
    Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, Minowa O, Kuno J, Sakakibara S, Yamada M, Yoneshima H, Miyawaki A, Fukuuchi Y, Furuichi T, Okano H, Mikoshiba K, Noda T. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996;379:168–171PubMedCrossRefGoogle Scholar
  14. 14.
    Li X, Zima AV, Sheikh F, Blatter LA, Chen J. Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate (IP3)-receptor type 2-deficient mice. Circ Res. 2005;96:1274–1281PubMedCrossRefGoogle Scholar
  15. 15.
    Wray S, Burdyga T. Sarcoplasmic reticulum function in smooth muscle. Physiol Rev. 2010;90:113–178PubMedCrossRefGoogle Scholar
  16. 16.
    Tasker PN, Taylor CW, Nixon GF. Expression and distribution of InsP3 receptor subtypes in proliferating vascular smooth muscle cells. Biochem Biophys Res Commun. 2000;273:907–912PubMedCrossRefGoogle Scholar
  17. 17.
    Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB, Kotlikoff MI. FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am J Physiol Cell Physiol. 2004;286:C538–546PubMedCrossRefGoogle Scholar
  18. 18.
    Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev. 2002;82:893–922PubMedGoogle Scholar
  19. 19.
    Sanderson MJ, Delmotte P, Bai Y, Perez-Zogbhi JF. Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc Am Thorac Soc. 2008;5:23–31PubMedCrossRefGoogle Scholar
  20. 20.
    Jaggar JH, Porter VA, Lederer WJ, Nelson MT. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol. 2000;278:C235–256PubMedGoogle Scholar
  21. 21.
    Liu QH, Zheng YM, Korde AS, Yadav VR, Rathore R, Wess J, Wang YX. Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle. Proc Natl Acad Sci U S A. 2009;106:11418–11423PubMedCrossRefGoogle Scholar
  22. 22.
    Liu QH, Zheng YM, Wang YX. Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells. Pflugers Arch. 2007;453:531–541PubMedCrossRefGoogle Scholar
  23. 23.
    Gordienko DV, Bolton TB. Crosstalk between ryanodine receptors and IP3 receptors as a factor shaping spontaneous Ca2+-release events in rabbit portal vein myocytes. J Physiol. 2002;542:743–762PubMedCrossRefGoogle Scholar
  24. 24.
    Remillard CV, Zhang WM, Shimoda LA, Sham JS. Physiological properties and functions of Ca2+ sparks in rat intrapulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2002;283:L433–444PubMedGoogle Scholar
  25. 25.
    Balemba OB, Salter MJ, Heppner TJ, Bonev AD, Nelson MT, Mawe GM. Spontaneous electrical rhythmicity and the role of the sarcoplasmic reticulum in the excitability of guinea pig gallbladder smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 2006;290:G655–664PubMedCrossRefGoogle Scholar
  26. 26.
    Kannan MS, Prakash YS, Brenner T, Mickelson JR, Sieck GC. Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle. Am J Physiol. 1997;272:L659–664PubMedGoogle Scholar
  27. 27.
    Prakash YS, Kannan MS, Sieck GC. Regulation of intracellular calcium oscillations in porcine tracheal smooth muscle cells. Am J Physiol. 1997;272:C966–975PubMedGoogle Scholar
  28. 28.
    Dai JM, Kuo KH, Leo JM, Pare PD, van Breemen C, Lee CH. Acetylcholine-induced asynchronous calcium waves in intact human bronchial muscle bundle. Am J Respir Cell Mol Biol. 2007;36:600–608PubMedCrossRefGoogle Scholar
  29. 29.
    Tazzeo T, Zhang Y, Keshavjee S, Janssen LJ. Ryanodine receptors decant internal Ca2+ store in human and bovine airway smooth muscle. Eur Respir J. 2008;32:275–284PubMedCrossRefGoogle Scholar
  30. 30.
    Liu X, Farley JM. Acetylcholine-induced chloride current oscillations in swine tracheal smooth muscle cells. J Pharmacol Exp Ther. 1996;276:178–186PubMedGoogle Scholar
  31. 31.
    Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci. 2001;2:387–396PubMedCrossRefGoogle Scholar
  32. 32.
    Wang YX, Zheng YM. Molecular expression and functional role of canonical transient receptor potential channels in airway smooth muscle cells. Adv Exp Med Biol. 2011;704:731–747PubMedCrossRefGoogle Scholar
  33. 33.
    White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol. 2006;35:243–251PubMedCrossRefGoogle Scholar
  34. 34.
    Xiao JH, Zheng YM, Liao B, Wang YX. Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am J Respir Cell Mol Biol. 2010;43:17–25PubMedCrossRefGoogle Scholar
  35. 35.
    Adebiyi A, Narayanan D, Jaggar JH. Caveolin-1 assembles type 1 inositol 1,4,5-trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells. J Biol Chem. 2011;286:4341–4348PubMedCrossRefGoogle Scholar
  36. 36.
    Tai K, Hamaide MC, Debaix H, Gailly P, Wibo M, Morel N. Agonist-evoked calcium entry in vascular smooth muscle cells requires IP3 receptor-mediated activation of TRPC1. Eur J Pharmacol. 2008;583:135–147PubMedCrossRefGoogle Scholar
  37. 37.
    Adebiyi A, Zhao G, Narayanan D, Thomas-Gatewood CM, Bannister JP, Jaggar JH. Isoform-selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility. Circ Res. 2010;106:1603–1612PubMedCrossRefGoogle Scholar
  38. 38.
    Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 2000;407:870–876PubMedCrossRefGoogle Scholar
  39. 39.
    Zhao G, Neeb ZP, Leo MD, Pachuau J, Adebiyi A, Ouyang K, Chen J, Jaggar JH. Type 1 IP3 receptors activate BKca channels via local molecular coupling in arterial smooth muscle cells. J Gen Physiol. 2010;136:283–291PubMedCrossRefGoogle Scholar
  40. 40.
    Lifshitz LM, Carmichael JD, Lai FA, Sorrentino V, Bellve K, Fogarty KE, ZhuGe R. Spatial organization of RyRs and BK channels underlying the activation of STOCs by Ca2+ sparks in airway myocytes. J Gen Physiol. 2011;138:195–209PubMedCrossRefGoogle Scholar
  41. 41.
    Wang YX, Kotlikoff MI. Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1997;94:14918–14923PubMedCrossRefGoogle Scholar
  42. 42.
    Janssen LJ, Sims SM. Acetylcholine activates non-selective cation and chloride conductances in canine and guinea-pig tracheal myocytes. J Physiol. 1992;453:197–218PubMedGoogle Scholar
  43. 43.
    ZhuGe R, Sims SM, Tuft RA, Fogarty KE, Walsh JV, Jr. Ca2+ sparks activate K+ and Cl- channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. J Physiol. 1998;513 ( Pt 3):711–718PubMedCrossRefGoogle Scholar
  44. 44.
    Bao R, Lifshitz LM, Tuft RA, Bellve K, Fogarty KE, ZhuGe R. A close association of RyRs with highly dense clusters of Ca2+-activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle. J Gen Physiol. 2008;132:145–160PubMedCrossRefGoogle Scholar
  45. 45.
    Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ. TMEM16a, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322:590–594PubMedCrossRefGoogle Scholar
  46. 46.
    Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY. Studies on expression and function of the TMEM16a calcium-activated chloride channel. Proc Natl Acad Sci U S A. 2009;106:21413–21418PubMedCrossRefGoogle Scholar
  47. 47.
    Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BL, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR. Calcium-activated chloride channel TMEM16a modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 2012;109:16354–16359PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang CH, Li Y, Zhao W, Lifshitz LM, Li H, Harfe BD, Zhu MS, Zhuge R. The transmembrane protein 16a Ca2+-activated Cl- channel in airway smooth muscle contributes to airway hyperresponsiveness. Am J Respir Crit Care Med. 2013;187:374–381PubMedCrossRefGoogle Scholar
  49. 49.
    Xu X, Yano M, Uchinoumi H, Hino A, Suetomi T, Ono M, Tateishi H, Oda T, Okuda S, Doi M, Kobayashi S, Yamamoto T, Ikeda Y, Ikemoto N, Matsuzaki M. Defective calmodulin binding to the cardiac ryanodine receptor plays a key role in CPVT-associated channel dysfunction. Biochem Biophys Res Commun. 2010;394:660–666PubMedCrossRefGoogle Scholar
  50. 50.
    Timerman AP, Onoue H, Xin HB, Barg S, Copello J, Wiederrecht G, Fleischer S. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem. 1996;271:20385–20391PubMedCrossRefGoogle Scholar
  51. 51.
    Liao B, Zheng YM, Yadav VR, Korde AS, Wang YX. Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes. Antioxid Redox Signal. 2011;14:37–47PubMedCrossRefGoogle Scholar
  52. 52.
    Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A, Dura M, Chen BX, Marks AR. Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest. 2010;120:4375–4387PubMedCrossRefGoogle Scholar
  53. 53.
    Meli AC, Refaat MM, Dura M, Reiken S, Wronska A, Wojciak J, Carroll J, Scheinman MM, Marks AR. A novel ryanodine receptor mutation linked to sudden death increases sensitivity to cytosolic calcium. Circ Res. 2011;109:281–290PubMedCrossRefGoogle Scholar
  54. 54.
    Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011;14:196–207PubMedCrossRefGoogle Scholar
  55. 55.
    Lanner JT, Georgiou DK, Dagnino-Acosta A, Ainbinder A, Cheng Q, Joshi AD, Chen Z, Yarotskyy V, Oakes JM, Lee CS, Monroe TO, Santillan A, Dong K, Goodyear L, Ismailov, II, Rodney GG, Dirksen RT, Hamilton SL. AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of ampk activation. Nat Med. 2012;18:244–251PubMedCrossRefGoogle Scholar
  56. 56.
    Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med. 2009;15:325–330PubMedCrossRefGoogle Scholar
  57. 57.
    Komalavilas P, Lincoln TM. Phosphorylation of the inositol 1,4,5-trisphosphate receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J Biol Chem. 1996;271:21933–21938PubMedCrossRefGoogle Scholar
  58. 58.
    Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature. 2000;404:197–201PubMedCrossRefGoogle Scholar
  59. 59.
    MacMillan D, Currie S, Bradley KN, Muir TC, McCarron JG. In smooth muscle, FK506-binding protein modulates IP3 receptor-evoked Ca2+ release by mTOR and calcineurin. J Cell Sci. 2005;118:5443–5451PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki YJ, Ford GD. Superoxide stimulates IP3-induced Ca2+ release from vascular smooth muscle sarcoplasmic reticulum. Am J Physiol. 1992;262:H114–116PubMedGoogle Scholar
  61. 61.
    Yadav VR, Song T, Joseph L, Mei L, Zheng YM, Wang YX. Important role of PLC-gamma1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2013;304:L143–151PubMedCrossRefGoogle Scholar
  62. 62.
    Liu QH, Zheng YM, Korde AS, Li XQ, Ma J, Takeshima H, Wang YX. Protein kinase C-epsilon regulates local calcium signaling in airway smooth muscle cells. Am J Respir Cell Mol Biol. 2009;40:663–671PubMedCrossRefGoogle Scholar
  63. 63.
    Kellner J, Tantzscher J, Oelmez H, Edelmann M, Fischer R, Huber RM, Bergner A. Mechanisms altering airway smooth muscle cell Ca2+ homeostasis in two asthma models. Respiration. 2008;76:205–215PubMedCrossRefGoogle Scholar
  64. 64.
    Mahn K, Hirst SJ, Ying S, Holt MR, Lavender P, Ojo OO, Siew L, Simcock DE, McVicker CG, Kanabar V, Snetkov VA, O’Connor BJ, Karner C, Cousins DJ, Macedo P, Chung KF, Corrigan CJ, Ward JP, Lee TH. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci U S A. 2009;106:10775–10780PubMedCrossRefGoogle Scholar
  65. 65.
    Bai Y, Sanderson MJ. Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP3 receptor. Respir Res. 2006;7:34PubMedCrossRefGoogle Scholar
  66. 66.
    Sneyd J, Tsaneva-Atanasova K, Reznikov V, Bai Y, Sanderson MJ, Yule DI. A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci U S A. 2006;103:1675–1680PubMedCrossRefGoogle Scholar
  67. 67.
    White C, McGeown JG. Carbachol triggers RyR-dependent Ca2+ release via activation of IP3 receptors in isolated rat gastric myocytes. J Physiol. 2002;542:725–733PubMedCrossRefGoogle Scholar
  68. 68.
    Boittin FX, Macrez N, Halet G, Mironneau J. Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes. Am J Physiol. 1999;277:C139–151PubMedGoogle Scholar
  69. 69.
    Matsumoto H, Hirata Y, Otsuka K, Iwata T, Inazumi A, Niimi A, Ito I, Ogawa E, Muro S, Sakai H, Chin K, Oku Y, Mishima M. Interleukin-13 enhanced Ca2+ oscillations in airway smooth muscle cells. Cytokine. 2012;57:19–24PubMedCrossRefGoogle Scholar
  70. 70.
    Matsuzaki S, Ishizuka T, Yamada H, Kamide Y, Hisada T, Ichimonji I, Aoki H, Yatomi M, Komachi M, Tsurumaki H, Ono A, Koga Y, Dobashi K, Mogi C, Sato K, Tomura H, Mori M, Okajima F. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells. Biochem Biophys Res Commun. 2011;413:499–503PubMedCrossRefGoogle Scholar
  71. 71.
    Tao FC, Tolloczko B, Mitchell CA, Powell WS, Martin JG. Inositol (1,4,5)trisphosphate metabolism and enhanced calcium mobilization in airway smooth muscle of hyperresponsive rats. Am J Respir Cell Mol Biol. 2000;23:514–520PubMedCrossRefGoogle Scholar
  72. 72.
    Chen C, Kudo M, Rutaganira F, Takano H, Lee C, Atakilit A, Robinett KS, Uede T, Wolters PJ, Shokat KM, Huang X, Sheppard D. Integrin alpha9beta1 in airway smooth muscle suppresses exaggerated airway narrowing. J Clin Invest. 2012;122:2916–2927PubMedCrossRefGoogle Scholar
  73. 73.
    Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med. 2010;16:1299–1304PubMedCrossRefGoogle Scholar
  74. 74.
    Clapper DL, Walseth TF, Dargie PJ, Lee HC. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987;262:9561–9568PubMedGoogle Scholar
  75. 75.
    Prakash YS, Kannan MS, Walseth TF, Sieck GC. Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am J Physiol. 1998;274:C1653–1660PubMedGoogle Scholar
  76. 76.
    Kip SN, Smelter M, Iyanoye A, Chini EN, Prakash YS, Pabelick CM, Sieck GC. Agonist-induced cyclic ADP ribose production in airway smooth muscle. Arch Biochem Biophys. 2006;452:102–107PubMedCrossRefGoogle Scholar
  77. 77.
    White TA, Kannan MS, Walseth TF. Intracellular calcium signaling through the cADPR pathway is agonist specific in porcine airway smooth muscle. FASEB J. 2003;17:482–484PubMedGoogle Scholar
  78. 78.
    Li PL, Tang WX, Valdivia HH, Zou AP, Campbell WB. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am J Physiol Heart Circ Physiol. 2001;280:H208–215PubMedGoogle Scholar
  79. 79.
    Lee HC, Aarhus R, Graeff R, Gurnack ME, Walseth TF. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature. 1994;370:307–309PubMedCrossRefGoogle Scholar
  80. 80.
    Lee HC, Aarhus R, Graeff RM. Sensitization of calcium-induced calcium release by cyclic adp-ribose and calmodulin. J Biol Chem. 1995;270:9060–9066PubMedCrossRefGoogle Scholar
  81. 81.
    Franco L, Bruzzone S, Song P, Guida L, Zocchi E, Walseth TF, Crimi E, Usai C, De Flora A, Brusasco V. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2001;280:L98–L106PubMedGoogle Scholar
  82. 82.
    Deshpande DA, White TA, Guedes AG, Milla C, Walseth TF, Lund FE, Kannan MS. Altered airway responsiveness in CD38-deficient mice. Am J Respir Cell Mol Biol. 2005;32:149–156PubMedCrossRefGoogle Scholar
  83. 83.
    Deshpande DA, Walseth TF, Panettieri RA, Kannan MS. CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness. FASEB J. 2003;17:452–454PubMedGoogle Scholar
  84. 84.
    Deshpande DA, Dogan S, Walseth TF, Miller SM, Amrani Y, Panettieri RA, Kannan MS. Modulation of calcium signaling by interleukin-13 in human airway smooth muscle: Role of CD38/cyclic adenosine diphosphate ribose pathway. Am J Respir Cell Mol Biol. 2004;31:36–42PubMedCrossRefGoogle Scholar
  85. 85.
    Guedes AG, Paulin J, Rivero-Nava L, Kita H, Lund FE, Kannan MS. CD38-deficient mice have reduced airway hyperresponsiveness following IL-13 challenge. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1286–1293PubMedCrossRefGoogle Scholar
  86. 86.
    Sieck GC, White TA, Thompson MA, Pabelick CM, Wylam ME, Prakash YS. Regulation of store-operated Ca2+ entry by CD38 in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2008;294:L378–385PubMedCrossRefGoogle Scholar
  87. 87.
    Jude JA, Solway J, Panettieri RA, Jr., Walseth TF, Kannan MS. Differential induction of CD38 expression by TNF-α in asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2010;299:L879–890PubMedCrossRefGoogle Scholar
  88. 88.
    Jude JA, Tirumurugaan KG, Kang BN, Panettieri RA, Walseth TF, Kannan MS. Regulation of CD38 expression in human airway smooth muscle cells: Role of class I phosphatidylinositol 3 kinases. Am J Respir Cell Mol Biol. 2012;47:427–435PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Center for Cardiovascular Sciences (MC-8)Albany Medical CollegeAlbanyUSA

Personalised recommendations