Modal Interpretations and Consecutive Measurements

  • Juan Sebastián Ardenghi
  • Olimpia Lombardi
  • Martín Narvaja
Conference paper
Part of the The European Philosophy of Science Association Proceedings book series (EPSP, volume 2)

Abstract

The correlations between the outcomes of consecutive measurements are one of those issues so deeply entrenched in the quantum knowledge of physicists that, in many cases, they use them to test the acceptability of any proposal of interpretation of the theory. The aim of the present article is to show the serious obstacles that modal interpretations face when trying to adequately account for those correlations, and to argue that the difficulties can be overcome without giving up the main modal theses if partial traces are dropped but the measuring apparatuses are taken into account.

References

  1. Ardenghi, J. S., Castagnino, M., & Lombardi, O. (2009). Quantum mechanics: Modal interpretation and Galilean transformations. Foundations of Physics, 39, 1023–1045.CrossRefGoogle Scholar
  2. Ardenghi, J. S., & Lombardi, O. (2011). The modal-Hamiltonian interpretation of quantum mechanics as a kind of “atomic” interpretation. Physics Research International, 2011, 379604.CrossRefGoogle Scholar
  3. Ballentine, L. (1998). Quantum mechanics: A modern development. Singapore: World Scientific.CrossRefGoogle Scholar
  4. Cohen-Tannoudji, C., Diu, B., & Lalöe, F. (1977). Quantum mechanics. New York: Wiley.Google Scholar
  5. d’Espagnat, B. (1976). Conceptual foundations of quantum mechanics. Reading: Benjamin.Google Scholar
  6. Dieks, D. (1988). The formalism of quantum theory: an objective description of reality? Annalen der Physik, 7, 174–190.CrossRefGoogle Scholar
  7. Dieks, D. (1989). Quantum mechanics without the projection postulate and its realistic interpretation. Foundations of Physics, 38, 1397–1423.CrossRefGoogle Scholar
  8. Dieks, D. (1994). Modal interpretation of quantum mechanics, measurements, and macroscopic behavior. Physical Review A, 49, 2290–2300.CrossRefGoogle Scholar
  9. Dieks, D. (2007). Probability in modal interpretations of quantum mechanics. Studies in History and Philosophy of Modern Physics, 19, 292–310.CrossRefGoogle Scholar
  10. Dieks, D., & Vermaas, P. (Eds.). (1998). The modal interpretation of quantum mechanics. Dordrecht: Kluwer Academic Publishers.Google Scholar
  11. Dirac, P. A. M. (1958). The principles of quantum mechanics. Oxford: Clarendon Press.Google Scholar
  12. Kochen, S. (1985). A new interpretation of quantum mechanics. In P. Mittelstaedt & P. Lahti (Eds.), Symposium on the foundations of modern physics 1985 (pp. 151–169). Singapore: World Scientific.Google Scholar
  13. Laura, R., & Vanni, L. (2008). Conditional probabilities and collapse in quantum measurements. International Journal of Theoretical Physics, 47, 2382–2392.CrossRefGoogle Scholar
  14. Lombardi, O., & Castagnino, M. (2008). A modal-Hamiltonian interpretation of quantum mechanics. Studies in History and Philosophy of Modern Physics, 39, 380–443.CrossRefGoogle Scholar
  15. Lombardi, O., Castagnino, M., & Ardenghi, J. S. (2010). The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Studies in History and Philosophy of Modern Physics, 41, 93–103.CrossRefGoogle Scholar
  16. Lombardi, O., & Dieks, D. (2013). Modal interpretations of quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2013 Edition). http://plato.stanford.edu/archives/fall2013/entries/qm-modal/.
  17. van Fraassen, B. C. (1972). A formal approach to the philosophy of science. In R. Colodny (Ed.), Paradigms and paradoxes: The philosophical challenge of the quantum domain (pp. 303–366). Pittsburgh: University of Pittsburgh Press.Google Scholar
  18. van Fraassen, B. C. (1991). Quantum mechanics: An empiricist view. Oxford: Clarendon Press.CrossRefGoogle Scholar
  19. Vermaas, P., & Dieks, D. (1995). The modal interpretation of quantum mechanics and its generalization to density operators. Foundations of Physics, 25, 145–158.CrossRefGoogle Scholar
  20. von Neumann J (1932) Mathematische grundlangen der quantum mechanik. Berlin: Springer-Verlag. English edition: Mathematical foundations of quantum mechanics, 1955. Princeton: Princeton University Press.Google Scholar
  21. Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75, 715–776.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Juan Sebastián Ardenghi
    • 1
  • Olimpia Lombardi
    • 1
  • Martín Narvaja
    • 1
  1. 1.CONICET – Universidad de Buenos AiresCiudad de Buenos AiresArgentina

Personalised recommendations