• Walczowski WaldemarEmail author
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)


The ocean has always influenced the Earth’s climate system and the influence continues today. It is an extremely significant, if not essential, component of the system. For it is the ocean and life that originated there that created the atmosphere and has shaped its composition for billions of years. It is particularly important to speak about it now—in time of increased concern about the climate, when the out-of-control human impact upon the condition of the atmosphere is visible.


Arctic Ocean Atlantic Meridional Overturning Circulation Ocean Circulation Atlantic Water Thermohaline Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010CrossRefGoogle Scholar
  2. Blindheim JV, Østerhus S (2005) The nordic seas, main oceanographic features. The Nordic Seas. An Integrated Perspective 158:11–39 AGU Geophysical MonographGoogle Scholar
  3. Bobylev LP, Kondratyev KY, Johannessen OM (2003) Arctic environment variability in the context of global change. Springer-Verlag, Berlin, p 471Google Scholar
  4. Broecker WS (1987) The biggest chill. Natural History, pp 74–82Google Scholar
  5. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N, Nature, 438:655–657, doi: 10.1038/nature04385
  6. Carmack E, Aagaard K (1973) On the deep water on the Greenland Sea. Deep-Sea Research 20:687–715Google Scholar
  7. Clark P, Marshall JS, Clarke GK, Hostetler SW, Licciardi J, Teller J (2001) Freshwater forcing of abrupt climate change during the last glaciation. Science 293:283–287CrossRefGoogle Scholar
  8. Clarke RA, Swift JH, Reid JL, Koltermann K (1990) The formation of Greenland Sea Deep Water: double diffusion or deep convection? Deep-Sea Research 37(9):1385–1424CrossRefGoogle Scholar
  9. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi: 10.1029/2007GL031972 CrossRefGoogle Scholar
  10. Cunningham S, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant E, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the atlantic meridional overturning circulation at 26.5°N. Science 317(5840):935–938, DOI: 10.1126/science.1141304Google Scholar
  11. Dickson R, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295CrossRefGoogle Scholar
  12. Dukhovskoy DS, Johnson MA, Proshutinsky A (2004) Arctic decadal variability: an auto-oscillatory system of heat and freshwater exchange. Geophys Res Lett 31:L03302. doi: 10.1029/2003GL019023 CrossRefGoogle Scholar
  13. Dukhovskoy D, Johnson M, Proshutinsky A (2006a) Arctic decadal variability from an idealized atmosphere-ice-ocean model: 1. Model description, calibration, and validation. J Geophys Res 111:C06028. doi: 10.1029/2004JC002821 CrossRefGoogle Scholar
  14. Dukhovskoy D, Johnson M, Proshutinsky A (2006b) ‘Arctic decadal variability from an idealized atmosphere-ice-ocean model: 2. Simulation of decadal oscillations. J Geophys Res 111:C06029. doi: 10.1029/2004JC002820 CrossRefGoogle Scholar
  15. EPICA-COMUNITY-MEMBERS (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444(9), doi: 10.1038/nature05301
  16. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158Google Scholar
  17. Hall M, Bryden i H (1982) Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res 29:339–359CrossRefGoogle Scholar
  18. Hansen B, Østerhus S (2000) North Atlantic-Norwegian Sea Exchanges. Prog Oceanogr 45:109–208CrossRefGoogle Scholar
  19. Hansen B, Østerhus S, Quadfasel D, Turrell W (2004) Already the day after tomorrow? Science 305:953–954CrossRefGoogle Scholar
  20. Hardy JT (2003) Climate change. Causes, effects, solutions. Willey Ltd, p 247Google Scholar
  21. Helland-Hansen B, Nansen F (1909) The Norwegian Sea, its physical oceanography based upon the Norwegian Research 1900-1904. Report on Norwegian and Marine Investigations, vol 2, p 390Google Scholar
  22. Holliday NP, Hughes SL, Bacon S, Beszczynska-Moeller A, Hansen B, Lavın A, Loeng H, Mork KA, Østerhus S, Sherwin T, Walczowski W (2008) Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophys Res Lett 35:L03614. doi: 10.1029/2007GL032675 CrossRefGoogle Scholar
  23. Holliday NP, Hughes S, Lavin A, Mork KA, Nolan G, Walczowski W, Beszczynska-Moeller A (2007) The end of a trend? The progression of unusually warm and saline water from the eastern North Atlantic into the Arctic Ocean. CLIVAR Exch 121:19–20Google Scholar
  24. Huang RX (1999) Mixing and energetics of the oceanic thermohaline circulation. J Phys Oceanogr 29:727–746CrossRefGoogle Scholar
  25. IPCC (2007) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  26. Knight J, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) Natural variations in the thermohaline circulation and future surface temperature. Geophys Res Lett 32:L20708. doi: 1029/2005GL024233 CrossRefGoogle Scholar
  27. Korty RL, Emanuel KA, Scott J (2008) Tropical cyclone–induced upper-ocean mixing and climate: application to equable climates. J Clim 21, doi:  10.1175/2007JCLI1659.1
  28. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics 45:RG2001, doi: 10.1029/2004RG000166
  29. Loeng H, Brander K, Carmack E, Denisenko S, Drinkwater K, Hansen B, Kovacs K, Livingston P, McLaughlin F, Sakshaug E (2005) Marine Systems. Arctic Clim Impact Assess ACIA, Arctic & Antarctic Research Institute, St. Petersburg, RussiaGoogle Scholar
  30. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  31. Metcalf WG (1955) On the formation of bottom water in the Norwegian Basin. Transactions. Am Geophy Union 36(4):596–600CrossRefGoogle Scholar
  32. Munk W, Wunsch C (1998) Abyssal recipes II: energetics of wind and tidal mixing. Deep-Sea Res 45:1977–2010CrossRefGoogle Scholar
  33. Nesje J, Jansen E, Birks H, Bjune A, Bakke J, Andersson C, Dahl S, Kristensen D, Lauritzen S, Lie Ø, Risebrobakken B, Svendsen J (2005) Holocene climate variability in the Northern North Atlantic Region: a review of terrestrial and marine evidence. The Nordic Seas. An Integrated Perspective 158:289–322 AGU Geophysical MonographGoogle Scholar
  34. Orsi AH, Smethie WM, Bullister JL (2002) On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J Geophys Res 107C8:3122 doi: 10.1029/2001JC000976
  35. Overland J, Spillane MC, Soreide NN (2004) Integrated analysis of physical and biological pan-arctic change. Clim Change 63:291–322CrossRefGoogle Scholar
  36. Parkinson CL, Cavalieri DJ (2008) Arctic Sea Ice Variability and Trends, 1979–2006. J Geophys Res 113:C07004. doi: 10.1029/2007JC004564 CrossRefGoogle Scholar
  37. Proshutinsky AY, Johnson MA (1997) Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res 102(C6):12493–12514Google Scholar
  38. Proshutinsky AY, Johnson M (2001) Two regimes of the arctic’s circulation from ocean models with ice and contaminants. Mar Pollut Bull 43:61–70CrossRefGoogle Scholar
  39. Rahmstorf S (1999b) Currents of change. Investigating the Ocean’s role in climate, Essay for the McDonnell foundation centennial fellowshipGoogle Scholar
  40. Rahmstorf S (2000) The thermohaline ocean circulation—a system with dangerous thresholds? Clim Change 46:247–256CrossRefGoogle Scholar
  41. Rahmstorf S (2003) The current climate. Nature 421Google Scholar
  42. Rahmstorf S (2006) Thermohaline Ocean Circulation. In: Elias SA (ed) Encyclopaedia of quaternary sciences. Elsevier, AmsterdamGoogle Scholar
  43. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient couplet climatic model. Clim Change 43:353–367CrossRefGoogle Scholar
  44. Richardson PL (2008) On the history of meridional overturning circulation schematic diagrams. Prog Oceanogr 76:466–486CrossRefGoogle Scholar
  45. Ronski S, Budeus G (2005) Time series of winter convection in the Greenland Sea. J Geophys Res 110:C04015. doi: 10.1029/2004JC002318 CrossRefGoogle Scholar
  46. Rothrock DA, Percival DB, Wensnahan M (2008) The decline in Arctic sea-ice thickness: separating the spatial, annual and interannual variability in a quarter century of submarine data. J Geophys Res 113:C05003. doi: 10.1029/2007JC004252 CrossRefGoogle Scholar
  47. Schauer U, Beszczynska–Moeller A, Walczowski W, Fahrbach E, Piechura J, Hansen E (2008) Variation of measured heat flow through the fram strait between 1997 and 2006. In: Arctic-subarctic ocean fluxes, Springer Science, pp 15–43Google Scholar
  48. Schiermeier Q (2006) A sea change. Nature 439:256–260CrossRefGoogle Scholar
  49. Serreze MC, Francis J (2006) The Arctic amplification debate. Clim Change. Springer, doi:  10.1007/s10584-005-9017-y
  50. Stewart RH (2006) Introduction to physical oceanography. Department of Oceanography, Texas A & M UniversityGoogle Scholar
  51. Steynor A, Wallace C (2007) The Gulf Stream—Atlantic meridional overturning circulation: observations and projections. UK Climate Impacts ProgrammeGoogle Scholar
  52. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:131–149Google Scholar
  53. Stouffer RJ, Yin J, Gregory JM, Dixon K, Spelman M, Hurlin W, Weaver A, Eby M, Flato G, Hasumi H, Hu A, Jungclaus J, Kamenkovich I, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Pelitie WR, Robitaille DY, Sokolov A, Vettoretti G, Webber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387CrossRefGoogle Scholar
  54. Talley LD (2003) Shallow, intermediate and deep overturning components of the global heat budget. J Phys Oceanogr 33:530–560CrossRefGoogle Scholar
  55. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning stream functions for the global ocean. J Clim 16:3213–3226CrossRefGoogle Scholar
  56. Toggweiler JR, Samuels B (1995) Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res 42:477–500CrossRefGoogle Scholar
  57. Wunsch C (2002) What is the thermohaline circulation? Science 298:1179CrossRefGoogle Scholar
  58. Wunsch C, Ferrari R (2004) Vertical mixing, energy and the general circulation of the oceans. Annu Rev Fluid Mech 36:281–314Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Oceanology, Physical OceanographyPolish Academy of SciencesSopotPoland

Personalised recommendations