Brownian Excursion Theory: A First Approach

  • Ju-Yi Yen
  • Marc Yor
Part of the Lecture Notes in Mathematics book series (LNM, volume 2088)


Brownian excursions away from 0 may be labeled by the inverse local time, which also allows to define Itô’s excursion process. This process is a Poisson Point Process. Descriptions of its intensity measure n shall be the subject of next chapters. Two master formulae, the additive one and the multiplicative one, are proven. They allow to compute expectations of sums or products of excursion functionals in terms of n. The Lévy measures of Brownian additive functionals, considered at inverse local time are shown to be expressible in terms of n. The distributions of the lifetime and the maximum of the generic excursion under n are computed.


Brownian Motion Extended Survey Additive Functional Class Theorem Maximal Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Itô, Poisson point processes attached to Markov processes, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory. Univ. (California Press, Berkeley, 1972), pp. 225–239Google Scholar
  2. 2.
    P.A. Meyer, Processus de Poisson ponctuels, d’après K. Itô. Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970). Lecture Notes in Math., vol. 191. (Springer, Berlin, 1971), pp. 177–190Google Scholar
  3. 3.
    J. Bertoin, Applications de la théorie spectrale des cordes vibrantes aux fonctionnelles additives principales d’un brownien réfléchi. Ann. Inst. H. Poincaré Probab. Stat. 25(3), 307–323 (1989)MathSciNetzbMATHGoogle Scholar
  4. 4.
    S. Kotani, S. Watanabe, Kreĭn’s spectral theory of strings and generalized diffusion processes. Functional analysis in Markov processes (Katata/Kyoto, 1981). Lecture Notes in Math., vol. 923. (Springer, Berlin, 1982), pp. 235–259Google Scholar
  5. 5.
    F.B. Knight, Characterization of the Levy measures of inverse local times of gap diffusion. Seminar on Stochastic Processes, 1981 (Evanston, Ill., 1981). Progr. Prob. Statist., vol. 1. (Birkhäuser, Boston, 1981), pp. 53–78Google Scholar
  6. 6.
    J. Pitman, M. Yor, Itô’s excursion theory and its applications. Jpn. J. Math. 2(1), 83–96 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ju-Yi Yen
    • 1
  • Marc Yor
    • 2
  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Laboratoire de Probabilités et Modèles AléatoiresUniversité Paris VIParis CX 05France

Personalised recommendations