Advertisement

Paul Lévy’s Arcsine Laws

  • Ju-Yi Yen
  • Marc Yor
Chapter
  • 1.5k Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 2088)

Abstract

Lévy proved that both the last zero of Brownian motion before time 1, and the time spent positive unto time 1 by Brownian motion are arc-sine distributed. We first recall some elementary representations of an arc-sine distributed variable. Lévy’s first result derives easily from there. As to Lévy’s second result, it follows from Tanaka’s formula used to write the positive and negative parts of Brownian motion as two independent reflecting Brownian motions, time-changed. We also study random Brownian scaling, which yields in particular another result of Lévy: the time spent positive by the Brownian bridge is uniformly distributed on (0, 1).

Keywords

Brownian Motion Random Time Normal Random Variable Brownian Bridge Standard Normal Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Barlow, J. Pitman, M. Yor, Une extension multidimensionnelle de la loi de l’arc sinus. Séminaire de Probabilités, XXIII. Lecture Notes in Math., vol. 1372. (Springer, Berlin, 1989), pp. 294–314Google Scholar
  2. 2.
    Ph. Biane, J.-F. Le Gall, M. Yor, Un processus qui ressemble au pont brownien. Séminaire de Probabilités, XXI. Lecture Notes in Math., vol. 1247. (Springer, Berlin, 1987), pp. 270–275Google Scholar
  3. 3.
    S.N. Evans, Multiplicities of a random sausage. Ann. Inst. H. Poincaré Probab. Stat. 30(3), 501–518 (1994)zbMATHGoogle Scholar
  4. 4.
    T. Jeulin, M. Yor, Sur les distributions de certaines fonctionnelles du mouvement brownien. Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French). Lecture Notes in Math., vol. 850. (Springer, Berlin, 1981), pp. 210–226Google Scholar
  5. 5.
    Y. Kasahara, Y. Yano, On a generalized arc-sine law for one-dimensional diffusion processes. Osaka J. Math. 42(1), 1–10 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    P. Lévy, Sur certains processus stochastiques homogènes. Compositio Math. 7, 283–339 (1939)MathSciNetGoogle Scholar
  7. 7.
    H.P. McKean, Brownian local times. Adv. Math. 16, 91–111 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    J. Pitman, M. Yor, Asymptotic laws of planar Brownian motion. Ann. Probab. 14(3), 733–779 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Pitman, M. Yor, Arcsine laws and interval partitions derived from a stable subordinator. Proc. Lond. Math. Soc. (3), 65(2), 326–356 (1992)Google Scholar
  10. 10.
    M. Yor, Random Brownian scaling and some absolute continuity relationships. Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993). Progr. Probab., vol. 36. (Birkhäuser, Boston, 1995), pp. 243–252Google Scholar
  11. 11.
    S. Watanabe, Generalized arc-sine laws for one-dimensional diffusion processes and random walks. Stochastic analysis (Ithaca, NY, 1993). Proc. Sympos. Pure Math. 57, 157–172 (1995)Google Scholar
  12. 12.
    S. Watanabe, K. Yano, Y. Yano, A density formula for the law of time spent on the positive side of one-dimensional diffusion processes. J. Math. Kyoto Univ. 45(4), 781–806 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    D. Williams, Markov properties of Brownian local time. Bull. Am. Math. Soc. 75, 1035–1036 (1969)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ju-Yi Yen
    • 1
  • Marc Yor
    • 2
  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Laboratoire de Probabilités et Modèles AléatoiresUniversité Paris VIParis CX 05France

Personalised recommendations