Towards Ultra-Portable Hybrid Organic/Inorganic Explosives Sensing Devices

  • Yue WangEmail author
Part of the Springer Theses book series (Springer Theses)


Chapter 8 describes some potential portable explosive sensors based on organic polymers. A CMOS lifetime micro-system, developed at the University of Edinburgh, can measure nanosecond time-scale PL decay. This is adapted as a tool for trace explosive detection. The vapour molecules reversibly quench the light emission from the copolymer CDT Green and change the PL decay lifetime. The integration of the micro-LEDs as optical excitation, the CMOS micro-system as detector, and the organic semiconductor as sensing element, promises an inexpensive and ultra-portable explosive detector. At the end of the chapter, a compact LED-pumped BBEHP-PPV laser is also used for the detection of low vapour pressure explosives with very fast responsivity.


Instrument Response Function Explosive Detection Constant Fraction Discriminator Single Photon Avalanche Diode Fluorescence Decay Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Woodfin, R. L. (2007). Trace chemical sensing of explosives. Newyork: Wiley-Interscience.Google Scholar
  2. 2.
    Fido® Explosives Detector Technical Review- online document.
  3. 3.
    Cavaye, H., Shaw, P. E., Wang, X., Burn, P. L., Lo, S. C., Meredith, P. (2010). Effect of dimensionality in dendrimeric and polymeric fluorescent materials for detecting explosives. Macromolecules, 43 (24), 10253–10261.Google Scholar
  4. 4.
    Olley, D. A., Wren, E. J., Vamvounis, G., Fernee, M. J., Wang, X., Burn, P. L., Meredith, P., Shaw, P. E. (2011). Explosive sensing with fluorescent dendrimers: The role of collisional quenching. J. Mater. Chem, 23 (3), 789–794.Google Scholar
  5. 5.
    Wang, Y., Rae, B. R., Henderson, R. K., Gong, Z., Mckendry, J., Gu, E. D., et al. (2011). Ultra-portable explosives sensor based on a CMOS fluorescence lifetime analysis micro-system. Journal – AIP Advances, 1(3), 032115.ADSCrossRefGoogle Scholar
  6. 6.
    Wang, Y., Turnbull, G. A., Samuel, I. D. W. (2011). Conjugated polymer sensors for explosive vapor detection. Proceedings of SPIE, 8118(1).Google Scholar
  7. 7.
    Rae, B. R., Muir, K. R., Gong, Z., McKendry, J., Girkin, J. M., Gu, E., et al. (2009). A CMOS Time-resolved fluorescence lifetime analysis micro-system. Sensors-Basel, 9(11), 9255–9274.CrossRefGoogle Scholar
  8. 8.
    Rae, B. R., Yang, J. B., McKendry, J., Gong, Z., Renshaw, D., Girkin, J. M., et al. (2010). A vertically Integrated CMOS microsystem for time-resolved fluorescence analysis. IEEE Transactions on Biomedical Circuits and Systems, 4(6), 437–444.CrossRefGoogle Scholar
  9. 9.
    McKendry, J. J. D., Rae, B. R., Gong, Z., Muir, K. R., Guilhabert, B., Massoubre, D., et al. (2009). Individually addressable alingan micro-led arrays with CMOS control and subnanosecond output pulses. IEEE Photonics Technology Letters, 21(9–12), 811–813.ADSCrossRefGoogle Scholar
  10. 10.
    Rose, A., Zhu, Z. G., Madigan, C. F., Swager, T. M., & Bulovic, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876–879.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St AndrewsScotlandUK

Personalised recommendations