Advertisement

Polymer with Intrinsic Microporosity Used as Explosive Vapour Sensors

  • Yue WangEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The compatibility of LED pumped OSLs makes them a new light source in various potential practical applications. An investigation of organic semiconductors for chemosensing nitro-aromatic compounds that are commonly used in explosives is presented in Chap. 7. A polymer of intrinsic micro-porosity (PIM-1) is of interest as its porous morphology, leading to high surface area, which can potentially enhance the penetration of explosive molecules, hence improving the sensitivity. By monitoring the photoluminescence and DFB laser emission, indication of the presence of 1,4-Dinitrobenzene (DNB) at a low vapour pressure is achieved. A significant enhancement in sensing efficiency and responsivity are established by using a DFB laser geometry. The microporous structures in PIM-1 make it a very promising material for rapid sensing of low-concentration explosives.

Keywords

Lower Unoccupied Molecular Orbital Amplify Spontaneous Emission Laser Sensor Explosive Detection Explosive Vapour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lawrence, J. R., Turnbull, G. A., & Samuel, I. D. W. (2002). Broadband optical amplifier based on a conjugated polymer. Applied Physics Letters, 80(17), 3036–3038.ADSCrossRefGoogle Scholar
  2. 2.
    Amarasinghe, D., Ruseckas, A., Vasdekis, A. E., Turnbull, G. A., & Samuel, I. D. W. (2009). High-gain broadband solid-state optical amplifier using a semiconducting copolymer. Advanced Materials, 21(1), 107–110.CrossRefGoogle Scholar
  3. 3.
    Woggon, T., Klinkhammer, S., & Lemmer, U. (2010). Compact spectroscopy system based on tunable organic semiconductor lasers. Applied Physics B, 99(1–2), 47–51.CrossRefGoogle Scholar
  4. 4.
    Rose, A., Zhu, Z. G., Madigan, C. F., Swager, T. M., & Bulovic, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876–879.ADSCrossRefGoogle Scholar
  5. 5.
    Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical sensors based on amplifying fluorescent conjugated polymers. Chemical Reviews, 107(4), 1339–1386.CrossRefGoogle Scholar
  6. 6.
    Germain, M. E., & Knapp, M. J. (2009). Optical explosives detection: From color changes to fluorescence turn-on. Chemical Society Reviews, 38(9), 2543–2555.CrossRefGoogle Scholar
  7. 7.
    Salinas, Y., Martinez-Manez, R., Marcos, M. D., Sancenon, F., Costero, A. M., Parra, M., et al. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 41(3), 1261–1296.CrossRefGoogle Scholar
  8. 8.
    Kercel, S. W., Burlage, R. S., Patek, D. R., Smith, C. M., Hibbs, A. D., & Rayner, T. J. (1997). Novel methods for detecting buried explosive devices. P Soc Photo-Opt Ins, 3079, 467–477.Google Scholar
  9. 9.
    Ewing, R. G., Atkinson, D. A., Eiceman, G. A., & Ewing, G. J. (2001). A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta, 54(3), 515–529.CrossRefGoogle Scholar
  10. 10.
    Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499–2512.ADSCrossRefGoogle Scholar
  11. 11.
    Steinfeld, J. I., & Wormhoudt, J. (1998). Explosives detection: a challenge for physical chemistry. Annual Review of Physical Chemistry, 49, 203–232.ADSCrossRefGoogle Scholar
  12. 12.
    WOODFIN, R. L.,(2007). Trace chemical sensing of explosives. wiley-Interscience: .Google Scholar
  13. 13.
    Schoon, A., & Berntsen, T. G. (2011). Evaluating the effect of early neurological stimulation on the development and training of mine detection dogs. Journal of Veterinary Behaviour, 6(2), 150–157.CrossRefGoogle Scholar
  14. 14.
    McLean, I. G. (2003). Mine Detection Dogs: Training, Operations and Odour Detection. Geneva: Geneva International Centre for Humanitarian Demining (GICHD).Google Scholar
  15. 15.
    Townsend, J. (2003). Pigs, a demining tool of the future? J. Journal of Mine Action, 7(3), 43.Google Scholar
  16. 16.
    Shaw, J. A., Seldomridge, N. L., Dunkle, D. L., Nugent, P. W., Spangler, L. H., Bromenshenk, J. J., et al. (2005). Polarization lidar measurements of honey bees in flight for locating land mines. Optics Express, 13(15), 5853–5863.ADSCrossRefGoogle Scholar
  17. 17.
    Bromenshenk, J. J.; Henderson, C. B.; Seccomb, R. A.; Rice, S. D.; Etter, R. T.; Bender, S. F. A.; Rodacy, P. J.; Shaw, J. A.; Seldomridge, N. L.; Spangler, L. H.; Wilson, J. J. (2003). Can honey bees assist in area reduction and landmine detection? Journal of Mine Action, 7 (3).Google Scholar
  18. 18.
    Todd, M. W., Provencal, R. A., Owano, T. G., Paldus, B. A., Kachanov, A., Vodopyanov, K. L., et al. (2002). Application of mid-infrared cavity-ringdown ectroscopy to trace explosives vapor detection using a broadly tunable (6–8 mu m) optical parametric oscillator. Applied Physics B, 75(2–3), 367–376.CrossRefGoogle Scholar
  19. 19.
    Sylvia, J. M., Janni, J. A., Klein, J. D., & Spencer, K. M. (2000). Surface-enhanced Raman detection of 1,4-dinitrotoluene impurity vapor as a marker to locate landmines. Analytical Chemistry, 72(23), 5834–5840.CrossRefGoogle Scholar
  20. 20.
    Turk, A. S., & Hocaoglu, K. A. (1977). Vertiy. A. A.: Waley & Sons.Google Scholar
  21. 21.
    Yang, J. S., & Swager, T. M. (1998). Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. Journal of the American Chemical Society, 120(46), 11864–11873.CrossRefGoogle Scholar
  22. 22.
    Czarnik, A. W. (1998). A sense for landmines. Nature, 394(6692), 417–418.ADSCrossRefGoogle Scholar
  23. 23.
    Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14–29.CrossRefGoogle Scholar
  24. 24.
    Richardson, S., Barcena, H. S., Turnbull, G. A., Burn, P. L., & Samuel, I. D. W. (2009). Chemosensing of 1, 4-dinitrobenzene using bisfluorene dendrimer distributed feedback lasers. Applied Physics Letters, 95(6), 063305.ADSCrossRefGoogle Scholar
  25. 25.
    Yang, Y., Turnbull, G. A., & Samuel, I. D. W. (2010). Sensitive explosive vapor detection with polyfluorene lasers. Advanced Functional Materials, 20(13), 2093–2097.CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Yang, Y., Turnbull, G. A., & Samuel, I. D. W. (2012). Explosive sensing using polymer lasers. Molecular Crystals and Liquid Crystals, 554, 103–110.CrossRefGoogle Scholar
  27. 27.
    Budd, P. M., Elabas, E. S., Ghanem, B. S., Makhseed, S., McKeown, N. B., Msayib, K. J., et al. (2004). Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Advanced Materials, 16(5), 456–458.CrossRefGoogle Scholar
  28. 28.
    Budd, P. M., Ghanem, B. S., Makhseed, S., McKeown, N. B., Msayib, K. J., & Tattershall, C. E. (2004). Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical Communications, 2, 230–231.CrossRefGoogle Scholar
  29. 29.
    McKeown, N. B., & Budd, P. M. (2010). Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules, 43(12), 5163–5176.ADSCrossRefGoogle Scholar
  30. 30.
    Budd, P. M., Msayib, K. J., Tattershall, C. E., Ghanem, B. S., Reynolds, K. J., McKeown, N. B., et al. (2005). Gas separation membranes from polymers of intrinsic microporosity. Journal of Membrane Science, 251(1–2), 263–269.CrossRefGoogle Scholar
  31. 31.
    Ghanem, B. S., McKeown, N. B., Budd, P. M., Selbie, J. D., & Fritsch, D. (2008). High-performance membranes from polyimides with intrinsic microporosity. Advanced Materials, 20(14), 2766.CrossRefGoogle Scholar
  32. 32.
    Budd, P. M., McKeown, N. B., Ghanem, B. S., Msayib, K. J., Fritsch, D., Starannikova, L., et al. (2008). Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. Journal of Membrane Science, 325(2), 851–860.CrossRefGoogle Scholar
  33. 33.
    Rakow, N. A., Wendland, M. S., Trend, J. E., Poirier, R. J., Paolucci, D. M., Maki, S. P., et al. (2010). Visual Indicator for trace organic volatiles. Langmuir, 26(6), 3767–3770.CrossRefGoogle Scholar
  34. 34.
    Combes, D. J., Cox, T. I., Sage, I. C.(2010). Preconcentrator device incorporating a polymer of intrinsic microporosity. U.S. Patent 2010/0144049.Google Scholar
  35. 35.
    Wang, Y., McKeown, N. B., Msayib, K. J., Turnbull, G. A., & Samuel, I. D. W. (2011). Laser chemosensor with rapid responsivity and inherent memory based on a polymer of intrinsic microporosity. Sensors-Basel, 11(3), 2478–2487.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Physics & AstronomyUniversity of St AndrewsScotlandUK

Personalised recommendations