Advertisement

Low Threshold Nanoimprinted Organic Lasers Integration with Micro-LED Arrays

  • Yue WangEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Chapter 6 presents work towards the HYPIX goal of OSLs pumped by GaN micro-pixellated LEDs that could be compatible with direct CMOS control. To accommodate the lower power density provided by the micro-LEDs compared to the commercial LEDs, polymer laser thresholds require further reduction. Mixed-order DFB resonators are designed to limit the output coupling to decrease the cavity loss and thus reduce the polymer laser threshold. These gratings are initially fabricated in silicon wafers by electron-beam lithography to ensure the accuracy of the sub-hundred nanometre widths. UV nanoimprint lithography (UV-NIL) is then applied to transfer the pattern onto optically transparent substrates, i.e. glass coated with a resist material. Different pump-beam geometries are also investigated to optimize the polymer laser threshold. Very low threshold BBEHP-PPV lasers are demonstrated with the mixed-order UV-NIL gratings and successfully pumped by customized micro-LED arrays.

Keywords

Pump Beam Sapphire Substrate Laser Threshold Pattern Sapphire Substrate Laser Diode Driver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Turnbull, G. A., Yang, Y., Shaw, P., Ruseckas, A., Samuel, I. D. W. (2008) Light-emitting diode pumped polymer lasers. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 7051.Google Scholar
  2. 2.
    Gong, Z., Jin, S. R., Chen, Y. J., McKendry, J., Massoubre, D., Watson, I. M., et al. (2010). Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. Journal of Applied Physics, 107(1), 013103.ADSCrossRefGoogle Scholar
  3. 3.
    Herrnsdorf, J. (2012) Organic lasers and nanostructured organic films for hybrid integration. Thesis for the degree of Doctor of Philosophy, University of Strathclyde, Glasgow.Google Scholar
  4. 4.
    Karnutsch, C., Gyrtner, C., Haug, V., Lemmer, U., Farrell, T., Nehls, B. S., et al. (2006). Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Applied Physics Letters, 89(20), 201108.ADSCrossRefGoogle Scholar
  5. 5.
    Zankovych, S., Hoffmann, T., Seekamp, J., Bruch, J. U., & Torres, C. M. S. (2001). Nanoimprint lithography: Challenges and prospects. Nanotechnology, 12(2), 91–95.ADSCrossRefGoogle Scholar
  6. 6.
    Guo, L. J. (2007). Nanoimprint lithography: Methods and material requirements. Advanced Materials, 19(4), 495–513.CrossRefGoogle Scholar
  7. 7.
    McGehee, M. D., Diaz-Garcia, M. A., Hide, F., Gupta, R., Miller, E. K., Moses, D., et al. (1998). Semiconducting polymer distributed feedback lasers. Applied Physics Letters, 72(13), 1536–1538.ADSCrossRefGoogle Scholar
  8. 8.
    Barlow, G. F., Shore, A., Turnbull, G. A., & Samuel, I. D. W. (2004). Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser. J Opt Soc Am B, 21(12), 2142–2150.ADSCrossRefGoogle Scholar
  9. 9.
    Vasdekis, A. E., Tsiminis, G., Ribierre, J. C., O’Faolain, L., Krauss, T. F., Turnbull, G. A., et al. (2006). Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend. Optics Express, 14(20), 9211–9216.ADSCrossRefGoogle Scholar
  10. 10.
    Pisignano, D., Persano, L., Mele, E., Visconti, P., Anni, M., Gigli, G., et al. (2005). First-order imprinted organic distributed feedback lasers. Synthetic Metals, 153(1–3), 237–240.CrossRefGoogle Scholar
  11. 11.
    Mele, E., Camposeo, A., Stabile, R., Del Carro, P., Di Benedetto, F., Persano, L., et al. (2006). Polymeric distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 89(13), 131109.ADSCrossRefGoogle Scholar
  12. 12.
    Chen, Y., Li, Z., Zhang, Z., Psaltis, D., & Scherer, A. (2007). Nanoimprinted circular grating distributed feedback dye laser. Applied Physics Letters, 91(5), 051109.ADSCrossRefGoogle Scholar
  13. 13.
    Namdas, E. B., Tong, M., Ledochowitsch, P., Mednick, S. R., Yuen, J. D., Moses, D., et al. (2009). Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers. Advanced Materials, 21(7), 799–802.CrossRefGoogle Scholar
  14. 14.
    McKendry, J. J. D., Rae, B. R., Gong, Z., Muir, K. R., Guilhabert, B., Massoubre, D., et al. (2009). Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses. IEEE Photonics Technology Letters, 21(9–12), 811–813.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St. AndrewsScotlandUK

Personalised recommendations