Low-Threshold and Broadly Tuneable Organic Lasers Based on Star-Shaped Oligofluorene Truxenes

  • Yue WangEmail author
Part of the Springer Theses book series (Springer Theses)


A family of star-shaped truxene-core fluorene-oligomers are introduced. Key photophysical features of two long arm members, T3 and T4, including their absorption and emission spectra, and solid-state photoluminescence quantum yields are studied. To inspect their potential as gain media for lasers, optical gain and loss coefficients are measured with amplified spontaneous emission from thin film waveguides. Ellipsometry measurements are performed to examine whether the thin films are amorphous or crystalline, and to determine the optical constants, i.e. refractive indices and extinction coefficients. The refractive indices of the gain media are important parameters in designing distributed feedback lasers. Low threshold surface emitting DFB lasers, optically pumped by a Q-switched microchip laser, are demonstrated with these oligofluorene truxenes, with broad tunability in the blue spectral region.


Organic Semiconductor Loss Coefficient Amplify Spontaneous Emission Pump Intensity Laser Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Li, B. S., Li, J., Fu, Y. Q., & Bo, Z. S. (2004). Porphyrins with four monodisperse oligofluorene arms as efficient red light-emitting materials. Journal of the American Chemical Society, 126(11), 3430–3431.CrossRefGoogle Scholar
  2. 2.
    de Bettignies, R., Nicolas, Y., Blanchard, P., Levillain, E., Nunzi, J. M., & Roncali, J. (2003). Planarized star-shaped oligothiophenes as a new class of organic semiconductors for heterojunction solar cells. Advanced Materials, 15(22), 1939–1943.CrossRefGoogle Scholar
  3. 3.
    Ponomarenko, S. A., Kirchmeyer, S., Elschner, A., Huisman, B. H., Karbach, A., & Drechsler, D. (2003). Star-shaped oligothiophenes for solution-processible organic field-effect transistors. Advanced Functional Materials, 13(8), 591–596.CrossRefGoogle Scholar
  4. 4.
    Kanibolotsky, A. L., Berridge, R., Skabara, P. J., Perepichka, I. F., Bradley, D. D. C., & Koeberg, M. (2004). Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: Highly fluorescent star-shaped architectures. Journal of the American Chemical Society, 126(42), 13695–13702.CrossRefGoogle Scholar
  5. 5.
    Gaylord, B. S., Wang, S. J., Heeger, A. J., & Bazan, G. C. (2001). Water-soluble conjugated oligomers: Effect of chain length and aggregation on photoluminescence-quenching efficiencies. Journal of the American Chemical Society, 123(26), 6417–6418.CrossRefGoogle Scholar
  6. 6.
    Kanibolotsky, A. L., Perepichka, I. F., & Skabara, P. J. (2010). Star-shaped pi-conjugated oligomers and their applications in organic electronics and photonics. Chemical Society Reviews, 39(7), 2695–2728.CrossRefGoogle Scholar
  7. 7.
    Gomez-Lor, B., de Frutos, O., Ceballos, P. A., Granier, T., & Echavarren, A. M. (2001). Synthesis of new C-3 h and C-3v truxene derivatives. European Journal of Organic Chemistry, 11, 2107–2114.CrossRefGoogle Scholar
  8. 8.
    Greenham, N. C., Samuel, I. D. W., Hayes, G. R., Phillips, R. T., Kessener, Y. A. R. R., Moratti, S. C., et al. (1995). Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chemical Physics Letters, 241(1–2), 89–96.ADSCrossRefGoogle Scholar
  9. 9.
    Xia, R. D., Heliotis, G., Hou, Y. B., & Bradley, D. D. C. (2003). Fluorene-based conjugated polymer optical gain media. Organic Electronics, 4(2–3), 165–177.CrossRefGoogle Scholar
  10. 10.
    Montgomery, N. A., Denis, J. C., Schumacher, S., Ruseckas, A., Skabara, P. J., Kanibolotsky, A., et al. (2011). Optical excitations in star-shaped fluorene molecules. Journal of Physical Chemistry A, 115(14), 2913–2919.ADSCrossRefGoogle Scholar
  11. 11.
    Bansal, A. K., Ruseckas, A., Shaw, P. E., & Samuel, I. D. W. (2010). Fluorescence Quenchers in Mixed Phase Polyfluorene Films. Journal of Physical Chemistry C, 114(41), 17864–17867.CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Tsiminis, G., Yang, Y., Ruseckas, A., Kanibolotsky, A. L., Perepichka, I. F., et al. (2010). Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene. Synthetic Met, 160(13–14), 1397–1400.CrossRefGoogle Scholar
  13. 13.
    Heliotis, G., Bradley, D. D. C., Turnbull, G. A., & Samuel, I. D. W. (2002). Light amplification and gain in polyfluorene waveguides. Applied Physics Letters, 81(3), 415–417.ADSCrossRefGoogle Scholar
  14. 14.
    McGehee, M. D., & Heeger, A. J. (2000). Semiconducting (conjugated) polymers as materials for solid-state lasers. Advanced Materials, 12(22), 1655–1668.CrossRefGoogle Scholar
  15. 15.
    Nguyen, T. Q., Martini, I. B., Liu, J., & Schwartz, B. J. (2000). Controlling interchain interactions in conjugated polymers: The effects of chain morphology on exciton–exciton annihilation and aggregation in MEH-PPV films. The Journal of Physical Chemistry B, 104(2), 237–255.CrossRefGoogle Scholar
  16. 16.
    Gupta, R., Stevenson, M., Dogariu, A., McGehee, M. D., Park, J. Y., Srdanov, V., et al. (1998). Low-threshold amplified spontaneous emission in blends of conjugated polymers. Applied Physics Letters, 73(24), 3492–3494.ADSCrossRefGoogle Scholar
  17. 17.
    Lin, H. W., Lin, C. L., Wu, C. C., Chao, T. C., & Wong, K. T. (2007). Influences of molecular orientations on stimulated emission characteristics of oligofluorene films. Organic Electronics, 8(2–3), 189–197.CrossRefGoogle Scholar
  18. 18.
    Ribierre, J. C., Tsiminis, G., Richardson, S., Turnbull, G. A., Samuel, I. D. W., Barcena, H. S., et al. (2007). Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Applied Physics Letters, 91(8), 81108–81110.CrossRefGoogle Scholar
  19. 19.
    Tsiminis, G., Wang, Y., Shaw, P. E., Kanibolotsky, A. L., Perepichka, I. F., Dawson, M. D., et al. (2009). Low-threshold organic laser based on an oligofluorene truxene with low optical losses. Applied Physics Letters, 94(24), 243304–243306.ADSCrossRefGoogle Scholar
  20. 20.
    Heliotis, G., Xia, R. D., Turnbull, G. A., Andrew, P., Barnes, W. L., Samuel, I. D. W., et al. (2004). Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Advanced Functional Materials, 14(1), 91–97.CrossRefGoogle Scholar
  21. 21.
    Schneider, D., Rabe, T., Riedl, T., Dobbertin, T., Werner, O., Kroger, M., et al. (2004). Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative. Applied Physics Letters, 84(23), 4693–4695.ADSCrossRefGoogle Scholar
  22. 22.
    Schneider, D., Rabe, T., Riedl, T., Dobbertin, T., Kröger, M., Becker, E., et al. (2004). Ultrawide tuning range in doped organic solid-state lasers. Applied Physics Letters, 85(11), 1886–1888.ADSCrossRefGoogle Scholar
  23. 23.
    Woggon, T., Klinkhammer, S., & Lemmer, U. (2010). Compact spectroscopy system based on tunable organic semiconductor lasers. Appl Phys B-Lasers O, 99(1–2), 47–51.ADSCrossRefGoogle Scholar
  24. 24.
    Clark, J., & Lanzani, G. (2010). Organic photonics for communications. Nature Photonics, 4(7), 438–446.ADSCrossRefGoogle Scholar
  25. 25.
    Wallikewitz, B. H., Nikiforov, G. O., Sirringhaus, H., & Friend, R. H. (2012). A nanoimprinted, optically tuneable organic laser. Applied Physics Letters, 100(17), 173301–173303.ADSCrossRefGoogle Scholar
  26. 26.
    Lai, W. Y., Xia, R. D., He, Q. Y., Levermore, P. A., Huang, W., & Bradley, D. D. C. (2009). Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials. Advanced Materials, 21(3), 355–360.CrossRefGoogle Scholar
  27. 27.
    v Dijken, A., Bastiaansen, J., Kiggen, N., Langeveld, B., Rothe, C., Monkman, A., et al. (2004). Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: Polymer hosts for high-efficiency light-emitting diodes. Journal of the American Chemical Society, 126, 7718–7727.CrossRefGoogle Scholar
  28. 28.
    Kulkarni, A. P., Tonzola, C. J., Babel, A., & Jenekhe, S. A. (2004). Electron transport materials for organic light-emitting diodes. Chemistry of Materials, 16, 4556–4573.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St. AndrewsScotland UK

Personalised recommendations