Advertisement

Theory of Organic Semiconductor Lasers

  • Yue WangEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The theoretical background of organic semiconductor lasers (OSLs) is discussed in this chapter, including both an introduction to the relevant material physics of conjugated polymers and the operation of the common laser geometries - pump sources and resonators for OSLs.

Keywords

Organic Semiconductor Transverse Electric Effective Refractive Index Population Inversion Distribute Bragg Reflector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Maiman, T. H. (1960). Optical and microwave-optical experiments in ruby. Physical Review Letters, 4(11), 546–566.ADSCrossRefGoogle Scholar
  2. 2.
    Hall, R. N., Fenner, G. E., Kingsley, J. D., Soltys, T. J., & Carlson, R. O. (1962). Coherent light emission from GaAs junctions. Physical Review Letters, 9(9), 366–368.ADSCrossRefGoogle Scholar
  3. 3.
    Nathan, M. I., Dumke, W. P., Burns, G., Dill, F. H., & Lasher, G. (1962). Stimulated emission of radiation from GaAs pn junctions. Applied Physics Letters, 1(3), 62–64.ADSCrossRefGoogle Scholar
  4. 4.
    Holonyak, Nick, & Bevacqua, S. F. (1962). Coherent (Visible) light emission from Ga(As1−xPx) junctions. Applied Physics Letters, 1(4), 82–83.ADSCrossRefGoogle Scholar
  5. 5.
    Alferov, Zh I, Andreev, V. M., Portno, E. L., & Trukan, M. K. (1969). Sov. Phys. Semicond, 3, 1107.Google Scholar
  6. 6.
    Hayashi, I., Panish, M. B., Foy, P. W., & Sumski, S. (1970). Applied Physics Letters, 17, 109.ADSCrossRefGoogle Scholar
  7. 7.
    Moses, D. (1992). High quantum efficiency luminescence from a conducting polymer in solution—a novel polymer laser-dye. Applied Physics Letters, 60(26), 3215–3216.ADSCrossRefGoogle Scholar
  8. 8.
    Tessler, N., Denton, G. J., & Friend, R. H. (1996). Lasing from conjugated-polymer microcavities. Nature, 382(6593), 695–697.ADSCrossRefGoogle Scholar
  9. 9.
    Clayden, J., Greeves, N., Warren, S. (2001). Organic chemistry (2nd ed.) Oxford: Oxford University Press.Google Scholar
  10. 10.
    Lewis, G. N., & Kasha, M. (1944). Phosphorescence and the triplet state. Journal of the American Chemical Society, 66(12), 2100–2116.CrossRefGoogle Scholar
  11. 11.
    Kepler, R. G., Valencia, V. S., Jacobs, S. J., & McNamara, J. J. (1996). Exciton-exciton annihilation in poly(p-phenylenevinylene) films. Synthetic Met, 78(3), 227–230.CrossRefGoogle Scholar
  12. 12.
    Frolov, S. V., Vardeny, Z. V., & Yoshino, K. (1998). Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions. Physical Review B, 57(15), 9141–9147.ADSCrossRefGoogle Scholar
  13. 13.
    DiazGarcia, M. A., Hide, F., Schwartz, B. J., Andersson, M. R., Pei, Q. B., & Heeger, A. J. (1997). Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials. Synthetic Met, 84(1–3), 455–462.CrossRefGoogle Scholar
  14. 14.
    Lawrence, J. R., Turnbull, G. A., Samuel, I. D. W., Richards, G. J., & Burn, P. L. (2004). Optical amplification in a first-generation dendritic organic semiconductor. Optics Letters, 29(8), 869–871.ADSCrossRefGoogle Scholar
  15. 15.
    Lawrence, J. R., Namdas, E. B., Richards, G. J., Burn, P. L., & Samuel, I. D. W. (2007). Effect of generation and soft lithography on semiconducting dendrimer lasers. Advanced Materials, 19(19), 3000–3003.CrossRefGoogle Scholar
  16. 16.
    Johansson, N., Salbeck, J., Bauer, J., Weissortel, F., Broms, P., Andersson, A., et al. (1998). Solid-state amplified spontaneous emission in some spiro-type molecules: A new concept for the design of solid-state lasing molecules. Advanced Materials, 10(14), 1136–1141.CrossRefGoogle Scholar
  17. 17.
    Kanibolotsky, A. L., Perepichka, I. F., & Skabara, P. J. (2010). Star-shaped pi-conjugated oligomers and their applications in organic electronics and photonics. Chemical Society Reviews, 39(7), 2695–2728.CrossRefGoogle Scholar
  18. 18.
    Ribierre, J. C., Tsiminis, G., Richardson, S., Turnbull, G. A., Samuel, I. D. W., Barcena, H. S., et al. (2007). Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Applied Physics Letters, 91(8), 081108.ADSCrossRefGoogle Scholar
  19. 19.
    Samuel, I. D. W., & Turnbull, G. A. (2007). Organic semiconductor lasers. Chemical Reviews, 107(4), 1272–1295.CrossRefGoogle Scholar
  20. 20.
    Hedley, G. J. (2010). Ultrafast photophysics of iridium complexes. Thesis for Doctor of Philosophy, University of St Andrews.Google Scholar
  21. 21.
    Frank, J. (1925). Elementary processes of photochemical reactions. Transactions of the Faraday Society, 21, 536–542.CrossRefGoogle Scholar
  22. 22.
    Lakowicz, J. R. (1983). Principles of fluorescence spectroscopy. New York: Plenum Press.CrossRefGoogle Scholar
  23. 23.
    Gupta, R., Stevenson, M., Dogariu, A., McGehee, M. D., Park, J. Y., Srdanov, V., et al. (1998). Low-threshold amplified spontaneous emission in blends of conjugated polymers. Applied Physics Letters, 73(24), 3492–3494.ADSCrossRefGoogle Scholar
  24. 24.
    Mattoussi, H., Murata, H., Merritt, C. D., Iizumi, Y., Kido, J., & Kafafi, Z. H. (1999). Photoluminescence quantum yield of pure and molecularly doped organic solid films. Journal of Applied Physics, 86(5), 2642–2650.ADSCrossRefGoogle Scholar
  25. 25.
    Pope, M., Swenberg, C. E. (1999). Electronic processes in organic crystals and polymers (2nd ed.). Oxford: Oxford University Press.Google Scholar
  26. 26.
    Kasha, M. (1947). Phosphorescence and the role of the triplet state in the electronic excitation of complex molecules. Chemical Reviews, 41(2), 401–419.CrossRefGoogle Scholar
  27. 27.
    Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., et al. (1998). Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395(6698), 151–154.ADSCrossRefGoogle Scholar
  28. 28.
    Kawamura, Y., Goushi, K., Brooks, J., Brown, J. J., Sasabe, H., & Adachi, C. (2005). 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Applied Physics Letters, 86(7), 071104.ADSCrossRefGoogle Scholar
  29. 29.
    Greenham, N. C., Samuel, I. D. W., Hayes, G. R., Phillips, R. T., Kessener, Y. A. R. R., Moratti, S. C., Holmes, A. B., Friend, R. H. (1995). Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chemical Physics Letters 241, 89–96.Google Scholar
  30. 30.
    Svelto, O., Hanna, D. C. (1998). Principles of lasers (4th ed.). New York: Springer.Google Scholar
  31. 31.
    Jenekhe, S. A., & Osaheni, J. A. (1994). Excimers and exciplexes of conjugated polymers. Science, 265(5173), 765–768.ADSCrossRefGoogle Scholar
  32. 32.
    Petrovic, J., Matavulj, P., Pinto, L., & Selmic, S. Z. (2009). Field induced singlet exciton dissociation and exciton–exciton Annihilation in MEH-PPV films studied by photocurrent spectra. Acta Physica Polonica A, 116(4), 595–597.ADSGoogle Scholar
  33. 33.
    Shukla, A., Ghosh, H., & Mazumdar, S. (2004). Ultrafast excited state absorption and charge separation in phenylene-based conjugated polymers. Synthetic Met, 141(1–2), 59–65.CrossRefGoogle Scholar
  34. 34.
    McBranch, D. W., Kraabel, B., Xu, S., Kohlman, R. S., Klimov, V. I., Bradley, D. D. C., et al. (1999). Signatures of excitons and polaron pairs in the femtosecond excited-state absorption spectra of phenylene-based conjugated polymers and oligomers. Synthetic Met, 101(1–3), 291–294.CrossRefGoogle Scholar
  35. 35.
    McGehee, M. D., Gupta, R., Veenstra, S., Miller, E. K., Diaz-Garcia, M. A., & Heeger, A. J. (1998). Amplified spontaneous emission from photopumped films of a conjugated polymer. Physical Review B, 58(11), 7035–7039.ADSCrossRefGoogle Scholar
  36. 36.
    Tessler, N. (1999). Lasers based on semiconducting organic materials. Advanced Materials, 11(5), 363–370.CrossRefGoogle Scholar
  37. 37.
    Chenais, S., & Forget, S. (2012). Recent advances in solid-state organic lasers. Polymer International, 61(3), 390–406.CrossRefGoogle Scholar
  38. 38.
    Buckman, A. B. (1995). Guided-wave photonics. Oxford: Oxford University Press.Google Scholar
  39. 39.
    Moharam, M. G., Grann, E. B., Pommet, D. A., & Gaylord, T. K. (1995). Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 12(5), 1068–1076.ADSCrossRefGoogle Scholar
  40. 40.
    Kazarinov, R. F., Henry, C. H. (1985). Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, QE-21(2), 144–150.Google Scholar
  41. 41.
    Barlow, G. F., Shore, A., Turnbull, G. A., & Samuel, I. D. W. (2004). Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser. Journal of Optical Society of American B: Optical Physics, 21(12), 2142–2150.ADSCrossRefGoogle Scholar
  42. 42.
    Turnbull, G. A., Carleton, A., Barlow, G. F., Tahraouhi, A., Krauss, T. F., Shore, K. A., et al. (2005). Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers. Journal of Applied Physics, 98(2), 023105.ADSCrossRefGoogle Scholar
  43. 43.
    Kogelnik, H., & Shank, C. V. (1972). Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 43(5), 2327–2335.ADSCrossRefGoogle Scholar
  44. 44.
    Navarro-Fuster, V., Vragovic, I., Calzado, E. M., Boj, P. G., Quintana, J. A., Villalvilla, J. M., et al. (2012). Film thickness and grating depth variation in organic second-order distributed feedback lasers. Journal of Applied Physics, 112, 043104.ADSCrossRefGoogle Scholar
  45. 45.
    Turnbull, G. A., Andrew, P., Barnes, W. L., & Samuel, I. D. W. (2003). Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Physical Review B, 67(16), 165107.ADSCrossRefGoogle Scholar
  46. 46.
    Turnbull, G. A., Andrew, P., Jory, M. J., Barnes, W. L., & Samuel, I. D. W. (2001). Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Physical Review B, 64(12), 125122.ADSCrossRefGoogle Scholar
  47. 47.
    Turnbull, G. A., Andrew, P., Barnes, W. L., & Samuel, I. D. W. (2003). Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Applied Physics Letters, 82(3), 313–315.ADSCrossRefGoogle Scholar
  48. 48.
    Heliotis, G., Xia, R. D., Turnbull, G. A., Andrew, P., Barnes, W. L., Samuel, I. D. W., et al. (2004). Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Advanced Functional Materials, 14(1), 91–97.CrossRefGoogle Scholar
  49. 49.
    Karnutsch, C., Pflumm, C., Heliotis, G., Demello, J. C., Bradley, D. D. C., Wang, J., et al. (2007). Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Applied Physics Letters, 90(13), 131104.ADSCrossRefGoogle Scholar
  50. 50.
    Vasdekis, A. E., Tsiminis, G., Ribierre, J. C., O’Faolain, L., Krauss, T. F., Turnbull, G. A., et al. (2006). Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend. Optics Express, 14(20), 9211–9216.ADSCrossRefGoogle Scholar
  51. 51.
    Riedl, T., Rabe, T., Johannes, H. H., Kowalsky, W., Wang, J., Weimann, T., et al. (2006). Tunable organic thin-film laser pumped by an inorganic violet diode laser. Applied Physics Letters, 88(24), 241116.ADSCrossRefGoogle Scholar
  52. 52.
    Baldo, M. A., Holmes, R. J., & Forrest, S. R. (2002). Prospects for electrically pumped organic lasers. Physical Review B, 66(3), 035321.ADSCrossRefGoogle Scholar
  53. 53.
    Gärtner, C. (2008). Organic laser diodes—modelling and simulation. Thesis for Doctor of Philosophy, University of Karlsruhe.Google Scholar
  54. 54.
    Baldo, M. A., & Forrest, S. R. (2001). Interface-limited injection in amorphous organic semiconductors. Physical Review B, 64(8), 085201.ADSCrossRefGoogle Scholar
  55. 55.
    Kulkarni, A. P., Tonzola, C. J., Babel, A., & Jenekhe, S. A. (2004). Electron transport materials for organic light-emitting diodes. Chemistry of Materials, 16(23), 4556–4573.CrossRefGoogle Scholar
  56. 56.
    Prins, P., Grozema, F. C., Nehls, B. S., Farrell, T., Scherf, U., & Siebbeles, L. D. A. (2006). Enhanced charge-carrier mobility in β-phase polyfluorene. Physical Review B, 74, 113203.ADSCrossRefGoogle Scholar
  57. 57.
    Yang, Y., Turnbull, G. A., & Samuel, I. D. W. (2008). Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode. Applied Physics Letters, 92(16), 163306.ADSCrossRefGoogle Scholar
  58. 58.
    Butun, B., Aydin, K., Ulker, E., Cheylan, S., Badenes, G., Forster, M., et al. (2008). A hybrid light source with integrated inorganic light-emitting diode and organic polymer distributed feedback grating. Nanotechnology, 19, 195202.ADSCrossRefGoogle Scholar
  59. 59.
    Giebink, N. C., & Forrest, S. R. (2009). Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Physical Review B, 79(7), 073302.ADSCrossRefGoogle Scholar
  60. 60.
    Zhang, Y. F., & Forrest, S. R. (2011). Existence of continuous-wave threshold for organic semiconductor lasers. Physical Review B, 84(24), 241301.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St. AndrewsScotlandUK

Personalised recommendations