Advertisement

Introduction

  • Yue WangEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter gives overviews of the development of organic semiconductors used as light-emitting sources, the HYPIX project and this thesis.

Keywords

Organic Semiconductor Gallium Nitride Photoluminescence Quantum Yield Organic Laser Trace Explosive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bernanose, A., Comte, M., & Vouaux, P. (1953). A new method of light emission by certain organic compounds. Journal of Chemical Physics, 50, 64–68.Google Scholar
  2. 2.
    Pope, M., Kallman, H., & Magnante, P. (1963). Electroluminescence in organic crystals. Journal of Chemical Physics, 38, 2042–2043.ADSCrossRefGoogle Scholar
  3. 3.
    Dresner, J. (1969). Double injection electroluminescence in anthracene. RCA Review, 30, 322–334.Google Scholar
  4. 4.
    The Nobel Prize in Chemistry 2000. Retrieved from http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/.
  5. 5.
    Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., et al. (1990). Light-emitting-diodes based on conjugated polymers. Nature, 347(6293), 539–541.ADSCrossRefGoogle Scholar
  6. 6.
    Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., et al. (1999). Electroluminescence in conjugated polymers. Nature, 397(6715), 121–128.ADSCrossRefGoogle Scholar
  7. 7.
    Gunes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated polymer-based organic solar cells. Chemical Reviews, 107(4), 1324–1338.CrossRefGoogle Scholar
  8. 8.
    Zaumseil, J., & Sirringhaus, H. (2007). Electron and ambipolar transport in organic field-effect transistors. Chemical Reviews, 107(4), 1296–1323.CrossRefGoogle Scholar
  9. 9.
    Samuel, I. D. W., & Turnbull, G. A. (2007). Organic semiconductor lasers. Chemical Reviews, 107(4), 1272–1295.CrossRefGoogle Scholar
  10. 10.
    Forrest, S. R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428(6986), 911–918.ADSCrossRefGoogle Scholar
  11. 11.
    Xia, Y. N., & Whitesides, G. M. (1998). Soft lithography. Annual Review of Materials Science, 28, 153–184.ADSCrossRefGoogle Scholar
  12. 12.
    Kulkarni, A. P., Tonzola, C. J., Babel, A., & Jenekhe, S. A. (2004). Electron transport materials for organic light-emitting diodes. Chemistry of Materials, 16(23), 4556–4573.CrossRefGoogle Scholar
  13. 13.
    Williams, E. L., Haavisto, K., Li, J., & Jabbour, G. E. (2007). Excimer-based white phosphorescent organic light emitting diodes with nearly 100 % internal quantum efficiency. Advanced Materials, 19(2), 197–202.CrossRefGoogle Scholar
  14. 14.
    Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lussem, B., et al. (2009). White organic light-emitting diodes with fluorescent tube efficiency. Nature, 459(7244), 234–239.ADSCrossRefGoogle Scholar
  15. 15.
    Moses, D. (1992). High quantum efficiency luminescence from a conducting polymer in Solution—a novel polymer laser-dye. Applied Physics Letters, 60(26), 3215–3216.ADSCrossRefGoogle Scholar
  16. 16.
    Tessler, N., Denton, G. J., & Friend, R. H. (1996). Lasing from conjugated-polymer microcavities. Nature, 382(6593), 695–697.ADSCrossRefGoogle Scholar
  17. 17.
    Hide, F., DiazGarcia, M. A., Schwartz, B. J., Andersson, M. R., Pei, Q. B., & Heeger, A. J. (1996). Semiconducting polymers: A new class of solid-state laser materials. Science, 273(5283), 1833–1836.ADSCrossRefGoogle Scholar
  18. 18.
    McGehee, M. D., & Heeger, A. J. (2000). Semiconducting (conjugated) polymers as materials for solid-state lasers. Advanced Materials, 12(22), 1655–1668.CrossRefGoogle Scholar
  19. 19.
    Riechel, S., Lemmer, U., Feldmann, J., Berleb, S., Muckl, A. G., Brutting, W., et al. (2001). Very compact tunable solid-state laser utilizing a thin-film organic semiconductor. Optics Letters, 26(9), 593–595.ADSCrossRefGoogle Scholar
  20. 20.
    Heliotis, G., Xia, R., Bradley, D. D. C., Turnbull, G. A., Samuel, I. D. W., Andrew, P., et al. (2004). Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium. Journal of Applied Physics, 96(12), 6959–6965.ADSCrossRefGoogle Scholar
  21. 21.
    Samuel, I. D. W., & Turnbull, G. A. (2004). Polymer lasers: recent advances. Materials Today, 7(9), 28–35.CrossRefGoogle Scholar
  22. 22.
    Karnutsch, C., Pflumm, C., Heliotis, G., Demello, J. C., Bradley, D. D. C., Wang, J., et al. (2007). Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Applied Physics Letters, 90, 131104.ADSCrossRefGoogle Scholar
  23. 23.
    Rose, A., Zhu, Z. G., Madigan, C. F., Swager, T. M., & Bulovic, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876–879.ADSCrossRefGoogle Scholar
  24. 24.
    Vasdekis, A. E., Tsiminis, G., Ribierre, J. C., O’Faolain, L., Krauss, T. F., Turnbull, G. A., et al. (2006). Diode pumped distributed bragg reflector lasers based on a dye-to-polymer energy transfer blend. Optics Express, 14(20), 9211–9216.ADSCrossRefGoogle Scholar
  25. 25.
    Riedl, T., Rabe, T., Johannes, H. H., Kowalsky, W., Wang, J., Weimann, T., et al. (2006). Tunable organic thin-film laser pumped by an inorganic violet diode laser. Applied Physics Letters, 88, 241116.ADSCrossRefGoogle Scholar
  26. 26.
    Grivas, C., & Pollnau, M. (2012). Organic solid-state integrated amplifiers and lasers. Laser & Photonics Reviews, 6(4), 419–462.CrossRefGoogle Scholar
  27. 27.
    Chenais, S., & Forget, S. (2012). Recent advances in solid-state organic lasers. Polymer International, 61(3), 390–406.CrossRefGoogle Scholar
  28. 28.
    Vannahme, C., Klinkhammer, S., Lemmer, U., & Mappes, T. (2011). Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Optics Express, 19(9), 8179–8186.ADSCrossRefGoogle Scholar
  29. 29.
    Zheng, W., & He, L. (2009). Label-free, real-time multiplexed DNA detection using fluorescent conjugated polymers. Journal of American Chemical Society, 131(10), 3432–3433.ADSCrossRefGoogle Scholar
  30. 30.
    Adachi, C., Baldo, M. A., Thompson, M. E., & Forrest, S. R. (2001). Nearly 100 % internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 90(10), 5048–5051.ADSCrossRefGoogle Scholar
  31. 31.
    Baldo, M. A., Holmes, R. J., & Forrest, S. R. (2002). Prospects for electrically pumped organic lasers. Physical Review B, 66(3), 035321.ADSCrossRefGoogle Scholar
  32. 32.
    Lattante, S., Romano, F., Caricato, A. P., Martino, M., & Anni, M. (2006). Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition. Applied Physics Letters, 89(3), 31108–31110.CrossRefGoogle Scholar
  33. 33.
    Reufer, M., Riechel, S., Lupton, J. M., Feldmann, J., Lemmer, U., Schneider, D., et al. (2004). Low-threshold polymeric distributed feedback lasers with metallic contacts. Applied Physics Letters, 84(17), 3262–3264.ADSCrossRefGoogle Scholar
  34. 34.
    Chakaroun, M., Coens, A., Fabre, N., Gourdon, F., Solard, J., Fischer, A., et al. (2011). Optimal design of a microcavity organic laser device under electrical pumping. Optics Express, 19(2), 493–505.ADSCrossRefGoogle Scholar
  35. 35.
    Namdas, E. B., Tong, M., Ledochowitsch, P., Mednick, S. R., Yuen, J. D., Moses, D., et al. (2009). Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers. Advanced Materials, 21(7), 799–802.CrossRefGoogle Scholar
  36. 36.
    O’Neill, M., & Kelly, S. M. (2011). Ordered materials for organic electronics and photonics. Advanced Materials, 23(5), 566–584.CrossRefGoogle Scholar
  37. 37.
    Zhang, Y. F., & Forrest, S. R. (2011). Existence of continuous-wave threshold for organic semiconductor lasers. Physical Review B, 84(24), 241301.ADSCrossRefGoogle Scholar
  38. 38.
    Bornemann, R., Lemmer, U., & Thiel, E. (2006). Continuous-wave solid-state dye laser. Optics Letters, 31(11), 1669–1671.ADSCrossRefGoogle Scholar
  39. 39.
    Yang, Y., Turnbull, G. A., & Samuel, I. D. W. (2008). Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode. Applied Physics Letters, 92(16), 163306.ADSCrossRefGoogle Scholar
  40. 40.
    HYPIX project. Retrieved from http://hypix.photonics.ac.uk/.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St. AndrewsScotlandUK

Personalised recommendations