Advertisement

UV-Visible Activation of Biomolecular Ions

  • Rodolphe Antoine
  • Dugourd Philippe Email author
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 83)

Abstract

Excited levels involved in photoexcitation of molecular ions depend on the wavelength of the light. Infrared photons correspond to vibrational excitation and lead to a global heating of ions and fragmentation on the ground state potential energy surface. In this chapter, we will discuss visible and UV excitations that occur in biomolecular ions. Visible and UV photons correspond to electronic excitations of valence electron. At higher energy photons, core-shell electron excitation is possible.

Keywords

Neutral Loss Collisional Induce Dissociation Select Reaction Monitoring Electronic Excited State Electron Detachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Antoine R, Dugourd P (2011) Phys Chem Chem Phys 13:16494–16509CrossRefGoogle Scholar
  2. 2.
    Creighton TE (1992) Proteins: structures and molecular properties. W. H. Freeman, San FranciscoGoogle Scholar
  3. 3.
    Rizzo TR, Park YD, Peteanu L, Levy DH (1985) J Chem Phys 83:4819–4820CrossRefGoogle Scholar
  4. 4.
    Wilson JJ, Brodbelt JS (2008) Anal Chem 80:5186–5196CrossRefGoogle Scholar
  5. 5.
    Sztáray J, Memboeuf A, Drahos L, Vékey K (2010) Mass Spectrom Rev 30:298–320CrossRefGoogle Scholar
  6. 6.
    Gabelica V, Tabarin T, Antoine R, Rosu F, Compagnon I, Broyer M, De Pauw E, Dugourd P (2006) Anal Chem 78:6564–6572CrossRefGoogle Scholar
  7. 7.
    Antoine R, Joly L, Tabarin T, Broyer M, Dugourd P, Lemoine J (2007) Rapid Commun Mass Spectrom 21:265–268CrossRefGoogle Scholar
  8. 8.
    Chu IK, Rodriquez CF, Lau TC, Hopkinson AC, Siu KWM (2000) J Phys Chem B 104:3393–3397CrossRefGoogle Scholar
  9. 9.
    Barlow CK, Wee S, McFadyen WD, O’Hair RAJ (2004) Dalton Trans 2004:3199Google Scholar
  10. 10.
    Ly T, Julian RR (2007) J Am Chem Soc 130:351–358CrossRefGoogle Scholar
  11. 11.
    Hodyss R, Cox HA, Beauchamp JL (2005) J Am Chem Soc 127:12436–12437CrossRefGoogle Scholar
  12. 12.
    Lemoine J, Tabarin T, Antoine R, Broyer M, Dugourd P (2006) Rapid Commun Mass Spectrom 20:507–511CrossRefGoogle Scholar
  13. 13.
    Girod M, Brunet C, Antoine R, Lemoine J, Dugourd P, Charles L (2012) J Am Soc Mass Spectrom 23:7–11CrossRefGoogle Scholar
  14. 14.
    Racaud A, Antoine R, Dugourd P, Lemoine J (2010) J Am Soc Mass Spectrom 21:2077–2084CrossRefGoogle Scholar
  15. 15.
    Larraillet V, Antoine R, Dugourd P, Lemoine J (2009) Anal Chem 81:8410–8416CrossRefGoogle Scholar
  16. 16.
    Gabelica V, Tabarin T, Antoine R, Rosu F, Compagnon I, Broyer M, De Pauw E, Dugourd P (2006) Anal Chem 78:6564–6572CrossRefGoogle Scholar
  17. 17.
    Enjalbert Q, Simon R, Salvador A, Antoine R, Redon S, Menaf Ayhan M, Darbour F, Chambert S, Bretonnière Y, Dugourd P, Lemoine J (2011) Rapid Commun Mass Spectrom 25:3375–3381CrossRefGoogle Scholar
  18. 18.
    Kalcic CL, Gunaratne TC, Jones AD, Dantus M, Reid GE (2009) J Am Chem Soc 131:940CrossRefGoogle Scholar
  19. 19.
    Rohr MIS, Petersen J, Brunet C, Antoine R, Broyer M, Dugourd P, Bonacic’-Koutecky V, O’Hair RAJ, Mitric R (2012) J Phys Chem Lett 3:1197–1201CrossRefGoogle Scholar
  20. 20.
    Bellina B, Compagnon I, Houver S, Maitre P, Allouche A-R, Antoine R, Dugourd P (2011) Angew Chem Int Ed 50:11430–11432CrossRefGoogle Scholar
  21. 21.
    Antoine R, Tabarin T, Broyer M, Dugourd P, Mitric R, Bonacic-Koutecky V (2006) Chem Phys Chem 7:524–528CrossRefGoogle Scholar
  22. 22.
    Iavarone AT, Duft D, Parks JH (2006) J Phys Chem A 110:12714–12727CrossRefGoogle Scholar
  23. 23.
    Bari S, Gonzalez-Magaña O, Reitsma G, Werner J, Schippers S, Hoekstra R, Schlathölter T (2011) J Chem Phys 134:024314CrossRefGoogle Scholar
  24. 24.
    Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Phys Chem Chem Phys 4:1093–1100CrossRefGoogle Scholar
  25. 25.
    Zucker S, Lee S, Webber N, Valentine S, Reilly J, Clemmer D (2011) J Am Soc Mass Spectrom 22:1477–1485CrossRefGoogle Scholar
  26. 26.
    Kalcic C, Reid G, Lozovoy VV, Dantus M (2012) J Phys Chem A 116:2764CrossRefGoogle Scholar
  27. 27.
    Guyon L, Tabarin T, Thuillier B, Antoine R, Broyer M, Boutou V, Wolf J-P, Dugourd P (2008) J Chem Phys 128:075103CrossRefGoogle Scholar
  28. 28.
    Brixner T, Kiefer B, Gerber G (2001) Chem Phys 267:241–246CrossRefGoogle Scholar
  29. 29.
    Terasaki A, Majima T, Kasai C, Kondow T (2009) Eur Phys J D 52:43CrossRefGoogle Scholar
  30. 30.
    Milosavljevic AR, Canon F, Nicolas C, Miron C, Nahon L, Giuliani A (2012) J Phys Chem Lett 3:1191–1196CrossRefGoogle Scholar
  31. 31.
    Gonzalez-Magana O, Reitsma G, Tiemens M, Boschman L, Hoekstra R, Schlathölter T (2012) J Phys Chem A 116:10745–10751CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Institut Lumière MatièreUMR5306 Université Lyon 1-CNRS, Université de LyonVilleurbanne cedexFrance

Personalised recommendations