Advertisement

Infrared Photodissociation of Biomolecular Ions

  • Polfer Nicolas C. Email author
  • Corey N. Stedwell
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 83)

Abstract

The emphasis of this chapter is on applications of vibrational spectroscopy to derive structural information of biomolecular ions. The section is organized by spectroscopic techniques and the types of tunable light sources that are employed. The potentials and limitations of these approaches with respect to recording infrared spectra are discussed, as well as the types of molecular systems that they can be applied to. The primary benefit of measuring infrared spectra on biomolecular ions derives from the compositional and structural information based on diagnostic vibrations. It is shown that IR spectroscopy in many cases is capable of distinguishing isomers. Moreover, cold spectroscopy methods provide extremely detailed structural information on gas-phase conformations. This chapter closes on an outlook of expected applications of infrared spectroscopy of biomolecules, focusing on the example of metabolites.

Keywords

Crown Ether Mass Channel chEMBL Database Photodissociation Spectrum Tunable Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fenn JB (2003) Angew Chem Int Ed Engl 42:3871–3894CrossRefGoogle Scholar
  2. 2.
    Karas M, Bahr U, Giessmann U (1991) Mass Spectrom Rev 10:335–357CrossRefGoogle Scholar
  3. 3.
    Ruotolo BT, Giles K, Campuzano I et al (2005) Science 310:1658–1661CrossRefGoogle Scholar
  4. 4.
    Uetrecht C, Rose RJ, van Duijn E et al (2010) Chem Soc Rev 39:1633–1655CrossRefGoogle Scholar
  5. 5.
    Flora JW, Muddiman DC (2001) Anal Chem 73:3305–3311CrossRefGoogle Scholar
  6. 6.
    Crowe MC, Brodbelt JS (2005) Anal Chem 77:5726–5734CrossRefGoogle Scholar
  7. 7.
    Hakansson K, Cooper HJ, Emmett MR et al (2001) Anal Chem 73:4530–4536CrossRefGoogle Scholar
  8. 8.
    Tseng K, Hedrick JL, Lebrilla CB (1999) Anal Chem 71:3747–3754CrossRefGoogle Scholar
  9. 9.
    Polfer NC, Valle JJ, Moore DT et al (2006) Anal Chem 78:670–679CrossRefGoogle Scholar
  10. 10.
    Stefan S, Eyler JR (2010) Int J Mass Spectrom 297:96–101CrossRefGoogle Scholar
  11. 11.
    Stefan S, Ehsan M, Pearson WL et al (2011) Anal Chem 83:8468–8476CrossRefGoogle Scholar
  12. 12.
    Mino WK Jr, Szczepanski J, Pearson W et al (2010) Int J Mass Spectrom 297:131–138CrossRefGoogle Scholar
  13. 13.
    Sinha RK, Erlekam U, Bythell B et al (2011) J Am Soc Mass Spectrom 22:1645–1650CrossRefGoogle Scholar
  14. 14.
    Yeh LI, Price JM, Lee YT (1989) J Am Chem Soc 111:5597–5604CrossRefGoogle Scholar
  15. 15.
    Peiris DM, Cheeseman MA, Ramanathan R et al (1993) J Phys Chem 97:7839–7843CrossRefGoogle Scholar
  16. 16.
    Scuderi D, Bakker JM, Durand S et al (2011) Int J Mass Spectrom 308:338–347CrossRefGoogle Scholar
  17. 17.
    Stedwell CN, Patrick AL, Gulyuz K et al (2012) Anal Chem 84:9907–9912CrossRefGoogle Scholar
  18. 18.
    Julian RR, Beauchamp JL (2001) Int J Mass Spectrom 210(211):613–623Google Scholar
  19. 19.
    Hammer NI, Diken EG, Roscioli JR et al (2005) J Chem Phys 122:244301CrossRefGoogle Scholar
  20. 20.
    Rizzo TR, Stearns JA, Boyarkin OV (2009) Int Rev Phys Chem 28:481–515CrossRefGoogle Scholar
  21. 21.
    Leavitt CM, Wolk AB, Fournier JA et al (2012) J Phys Chem Lett 3:1099–1105CrossRefGoogle Scholar
  22. 22.
    Garand E, Kamrath MZ, Jordan PA et al (2012) Science 335:694–698CrossRefGoogle Scholar
  23. 23.
    Wassermann TN, Boyarkin OV, Paizs B et al (2012) J Am Soc Mass Spectrom 23:1029–1045CrossRefGoogle Scholar
  24. 24.
    Kamariotis A, Boyarkin OV, Mercier SR et al (2006) J Am Chem Soc 128:905–916CrossRefGoogle Scholar
  25. 25.
    Oomens J, Polfer N, Moore DT et al (2005) Phys Chem Chem Phys 7:1345–1348CrossRefGoogle Scholar
  26. 26.
    Gaulton A, Bellis LJ, Bento AP et al (2012) Nucleic Acids Res 82:2456–2462Google Scholar
  27. 27.
    Polfer N, Paizs B, Snoek LC et al (2005) J Am Chem Soc 127:8571–8579CrossRefGoogle Scholar
  28. 28.
    Stedwell CN, Galindo JF, Gulyuz K et al (2013) J Phys Chem A 117:1181–1188CrossRefGoogle Scholar
  29. 29.
    Cagmat E, Szczepanski J, Pearson W et al (2010) Phys Chem Chem Phys 12:3474–3479CrossRefGoogle Scholar
  30. 30.
    Kamrath MZ, Garand E, Jordan PA et al (2011) J Am Chem Soc 133:6440–6448CrossRefGoogle Scholar
  31. 31.
    Stearns JA, Seaiby C, Boyarkin OV et al (2009) Phys Chem Chem Phys 11:125–132CrossRefGoogle Scholar
  32. 32.
    Stedwell CN, Galindo JF, Roitberg A et al. (2013) Ann Rev Anal Chem 6:267–285Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations