Part of the Springer Theses book series (Springer Theses)


Nuclear physics deals with the study of the fundamental properties of nuclear matter and the character of the strong nuclear force. By the 1960s the concept of nuclear matter had been extended from the nucleons making up atomic nuclei to a vast number of strongly interacting particles known as hadrons.


Monte Carlo Nuclear Matter Quark Gluon Plasma Fragmentation Function Parton Shower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Han, Y. Nambu, Three triplet model with double \(SU(3)\) symmetry. Phys. Rev. 139, B1006–B1010 (1965)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067–1084 (1962)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Gell-Mann, A schematic model of Baryons and Mesons. Phys. Lett. 8, 214–215 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    J.J.J. Kokkedee, The quark model, CERN-TH-757 (1967)Google Scholar
  5. 5.
    G. Zweig, An \(SU_3\) model for strong interaction symmetry and its breaking: Part I, CERN-TH-401 (1964)Google Scholar
  6. 6.
    G. Zweig, An \(SU_3\) model for strong interaction symmetry and its breaking: Part II, CERN-TH-412 (1964)Google Scholar
  7. 7.
    V. Barnes et al., Observation of a hyperon with strangeness \(-3\). Phys. Rev. Lett. 12, 204–206 (1964)ADSCrossRefGoogle Scholar
  8. 8.
    J. Bjorken, Asymptotic sum rules at infinite momentum. Phys. Rev. 179, 1547–1553 (1969)ADSCrossRefGoogle Scholar
  9. 9.
    E.D. Bloom et al., High-energy inelastic ep scattering at 6-Degrees and 10-Degrees. Phys. Rev. Lett. 23, 930–934 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    J.I. Friedman, H.W. Kendall, Deep inelastic electron scattering. Ann. Rev. Nucl. Part. Sci. 22, 203–254 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    J. Bjorken, E.A. Paschos, Inelastic Electron-Proton and gamma-Proton scattering, and the structure of the Nucleon. Phys. Rev. 185, 1975–1982 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415–1417 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    R.P. Feynman, The behavior of hadron collisions at extreme energies. Invited paper at the Third Conference on High-Energy Collisions (Stony Brook, New York, Sep 1969), pp. 5–6Google Scholar
  14. 14.
    M. Gell-Mann, F. Low, Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954)MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    K.G. Wilson, Non-Lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    C.G. Callan, Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541–1547 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    K. Symanzik, Small distance behavior in field theory and power counting. Commun. Math. Phys. 18, 227–246 (1970)MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    C.G. Callan, D.J. Gross, Bjorken scaling in quantum field theory. Phys. Rev. D 8, 4383–4394 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    N.H. Christ, B. Hasslacher, A.H. Mueller, Light cone behavior of perturbation theory. Phys. Rev. D 6, 3543 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    C.-N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    H. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)ADSCrossRefGoogle Scholar
  22. 22.
    D. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    D. Gross, F. Wilczek, Asymptotically free gauge theories. 1. Phys. Rev. D 8, 3633–3652 (1973)ADSCrossRefGoogle Scholar
  24. 24.
    D. Gross, F. Wilczek, Asymptotically free gauge theories. 2. Phys. Rev. D 9, 980–993 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    H. Politzer, Asymptotic freedom: an approach to strong interactions. Phys. Rept. 14, 129–180 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    H. Georgi, H. Politzer, Electroproduction scaling in an asymptotically free theory of strong interactions. Phys. Rev. D 9, 416–420 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    S. Drell, T. Yan, Massive Lepton pair production in Hadron-Hadron collisions at high-energies. Phys. Rev. Lett. 25, 316–320 (1970)ADSCrossRefGoogle Scholar
  28. 28.
    CTEQ Collaboration, Handbook of perturbative QCD; version 1.1: Sept. 1994. Rev. Mod. Phys. (1994)Google Scholar
  29. 29.
    K. Nakamura et al., Review of particle physics. J. Phys. G 37, 075021 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    C.G. Callan, D.J. Gross, High-energy electroproduction and the constitution of the electric current. Phys. Rev. Lett. 22, 156–159 (1969)ADSCrossRefGoogle Scholar
  31. 31.
    A. Bodek et al., Experimental studies of the Neutron and Proton electromagnetic structure functions. Phys. Rev. D 20, 1471–1552 (1979)ADSCrossRefGoogle Scholar
  32. 32.
    V. Ezhela, S. Lugovsky, O. Zenin, Hadronic part of the muon g-2 estimated on the \(\sigma ^{2003}_{\text{ tot }} (e^{+}e^{-}\rightarrow hadrons)\) evaluated data compilation. arXiv:hep-ph/0312114Google Scholar
  33. 33.
    G. Hanson et al., Evidence for jet structure in hadron production by \(e^{+}e^{-}\) annihilation. Phys. Rev. Lett. 35, 1609–1612 (1975)ADSCrossRefGoogle Scholar
  34. 34.
    S.L. Wu, \(e^{+}e^{-}\) Physics at PETRA: the first 5-years. Phys. Rept. 107, 59–324 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    S. Bethke, The 2009 world average of \(\alpha _\text{ S }\). Eur. Phys. J. C 64, 689–703 (2009). arXiv:0908.1135Google Scholar
  36. 36.
    L. Faddeev, V. Popov, Feynman diagrams for the Yang-Mills field. Phys. Lett. B 25, 29–30 (1967)ADSCrossRefGoogle Scholar
  37. 37.
    G.F. Sterman, S. Weinberg, Jets from quantum chromodynamics. Phys. Rev. Lett. 39, 1436 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    Y.L. Dokshitzer, D. Diakonov, S. Troian, Hard processes in quantum chromodynamics. Phys. Rept. 58, 269–395 (1980)ADSCrossRefGoogle Scholar
  39. 39.
    G.F. Sterman, Mass divergences in annihilation processes. 1. Origin and nature of divergences in cut vacuum polarization diagrams. Phys. Rev. D 17, 2773 (1978)ADSCrossRefGoogle Scholar
  40. 40.
    K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)ADSCrossRefGoogle Scholar
  41. 41.
    H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice. 1. Proof by homotopy theory. Nucl. Phys. B185, 20 (1981)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    H.B. Nielsen, M. Ninomiya, No go theorem for regularizing chiral fermions. Phys. Lett. B105, 219 (1981)ADSCrossRefGoogle Scholar
  43. 43.
    J.B. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D11, 395 (1975)ADSGoogle Scholar
  44. 44.
    K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and \(\phi ^4\) theory. Nucl. Phys. B226, 187 (1983)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    A. Bazavov et al., Nonperturbative QCD simulations with \(2+1\) flavors of improved staggered quarks. Rev. Mod. Phys. 82, 1349–1417 (2010). arXiv:0903.3598Google Scholar
  46. 46.
    Y. Nambu, Lectures at the copenhagen, symposium (1970)Google Scholar
  47. 47.
    T. Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model. Prog. Theor. Phys. 46, 1560–1569 (1971)MathSciNetADSCrossRefzbMATHGoogle Scholar
  48. 48.
    B. Andersson et al., Parton fragmentation and string dynamics. Phys. Rept. 97, 31–145 (1983)ADSCrossRefGoogle Scholar
  49. 49.
    T. Sjostrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74–90 (1994)ADSCrossRefGoogle Scholar
  50. 50.
    J.C. Collins, D.E. Soper, G.F. Sterman, Factorization for short distance Hadron-Hadron scattering. Nucl. Phys. B261, 104 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    J.C. Collins, D.E. Soper, G.F. Sterman, Soft gluons and factorization. Nucl. Phys. B308, 833 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    J.C. Collins, D.E. Soper, G.F. Sterman, Factorization of hard processes in QCD. Adv. Ser. Direct. High Energy Phys. 5, 1–91 (1988). arXiv:hep-ph/0409313Google Scholar
  53. 53.
    S.J. Brodsky, D.S. Hwang, I. Schmidt, Final-state interactions and single-spin asymmetries in semi-inclusive deep inelastic scattering. Phys. Lett. B530, 99–107 (2002). arXiv:hep-ph/0201296Google Scholar
  54. 54.
    S.J. Brodsky et al., Structure functions are not parton probabilities. Phys. Rev. D 65, 114025 (2002). arXiv:hep-ph/0104291Google Scholar
  55. 55.
    J.C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering. Phys. Lett. B 536, 43–48 (2002). arXiv:hep-ph/0204004Google Scholar
  56. 56.
    D. Boer, P. Mulders, F. Pijlman, Universality of \(T\)-odd effects in single spin and azimuthal asymmetries. Nucl. Phys. B 667, 201–241 (2003). arXiv:hep-ph/0303034Google Scholar
  57. 57.
    J.C. Collins, D.E. Soper, Back-to-back jets in QCD. Nucl. Phys. B 193, 381 (1981)ADSCrossRefGoogle Scholar
  58. 58.
    J.C. Collins, D.E. Soper, G.F. Sterman, Transverse momentum distribution in Drell-Yan Pair and W and Z Boson production. Nucl. Phys. B 250, 199 (1985)ADSCrossRefGoogle Scholar
  59. 59.
    J. Collins, J.-W. Qiu, \(k_{\text{ t }}\) factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions. Phys. Rev. D 75, 114014 (2007). arXiv:0705.2141Google Scholar
  60. 60.
    T.C. Rogers, P.J. Mulders, No generalized transverse momentum dependent factorization in the hadroproduction of high transverse momentum hadrons. Phys. Rev. D 81, 094006 (2010). arXiv:1001.2977Google Scholar
  61. 61.
    G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language. Nucl. Phys. B 126, 298 (1977)ADSCrossRefGoogle Scholar
  62. 62.
    V. Gribov, L. Lipatov, Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450 (1972)Google Scholar
  63. 63.
    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and \(e^{+}e^{-}\) annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641–653 (1977)Google Scholar
  64. 64.
    A.H. Mueller, Multiplicity and Hadron distributions in QCD jets: nonleading terms. Nucl. Phys. B B213, 85 (1983)ADSCrossRefGoogle Scholar
  65. 65.
    Y.L. Dokshitzer, V.A. Khoze, S. Troian, Inclusive particle spectra from QCD cascades. Int. J. Mod. Phys. A 7, 1875–1906 (1992)ADSCrossRefGoogle Scholar
  66. 66.
    Y.L. Dokshitzer, V.A. Khoze, A.H. Mller, S.I. Troyan, Basics of perturbative QCD (Basics of. Ed. Frontires, Gif-sur-Yvette, 1991)Google Scholar
  67. 67.
    V.A. Khoze, W. Ochs, Perturbative QCD approach to multiparticle production. Int. J. Mod. Phys. A 12, 2949–3120 (1997). arXiv:hep-ph/9701421Google Scholar
  68. 68.
    C. Fong, B. Webber, One and two particle distributions at small x in QCD jets. Nucl. Phys. B355, 54–81 (1991)ADSCrossRefGoogle Scholar
  69. 69.
    Y.L. Dokshitzer, V.S. Fadin, V.A. Khoze, Double logs of perturbative QCD for parton jets and soft Hadron spectra. Z. Phys. C 15, 325 (1982)Google Scholar
  70. 70.
    D. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for protons and charged hadrons. Phys. Rev. D 76, 074033 (2007). arXiv:0707.1506Google Scholar
  71. 71.
    D. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties. Phys. Rev. D 75, 114010 (2007). arXiv:hep-ph/0703242Google Scholar
  72. 72.
    M. Hirai, S. Kumano, T.-H. Nagai, K. Sudoh, Determination of fragmentation functions and their uncertainties. Phys. Rev. D 75, 094009 (2007). arXiv:hep-ph/0702250Google Scholar
  73. 73.
    B. Webber, A QCD model for jet fragmentation including Soft Gluon interference. Nucl. Phys. B238, 492 (1984)ADSCrossRefGoogle Scholar
  74. 74.
    G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1. Comput. Phys. Commun. 67, 465–508(1992) (April 1991)Google Scholar
  75. 75.
    S. Catani et al., QCD matrix elements + parton showers, JHEP 0111 063 (2001). arXiv:hep-ph/0109231Google Scholar
  76. 76.
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473–500 (2008). arXiv:0706.2569Google Scholar
  77. 77.
    T. Gleisberg et al., SHERPA 1. alpha: a proof of concept version. JHEP 0402, 056. arXiv:hep-ph/0311263Google Scholar
  78. 78.
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP 0307, 001 (2003). arXiv:hep-ph/0206293Google Scholar
  79. 79.
    J.E. Huth et al., Toward a standardization of jet definitions, FERMILAB-CONF-90-249-E (1990)Google Scholar
  80. 80.
    S.D. Ellis, Z. Kunszt, D.E. Soper, The one jet inclusive cross-section at order \(\alpha _{\text{ S }}^3\) quarks and gluons. Phys. Rev. Lett. 64, 2121 (1990)ADSCrossRefGoogle Scholar
  81. 81.
    G.P. Salam, Towards jetography. Eur. Phys. J. C 67, 637–686 (2010). arXiv:0906.1833Google Scholar
  82. 82.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k_{\text{ t }}\) jet clustering algorithm. JHEP 0804, 063 (2008). arXiv:0802.1189Google Scholar
  83. 83.
    JADE Collaboration, Experimental studies on multi-jet production in \(e^{+}e^{-}\) annihilation at PETRA energies. Z. Phys. C 33, 23 (1986)Google Scholar
  84. 84.
    JADE Collaboration, Experimental investigation of the energy dependence of the strong coupling strength. Phys. Lett. B 213, 235 (1988)Google Scholar
  85. 85.
    S. Catani et al., New clustering algorithm for multi-jet cross-sections in \(e^{+}e^{-}\) annihilation. Phys. Lett. B 269, 432–438 (1991)ADSCrossRefGoogle Scholar
  86. 86.
    S. Catani et al., Longitudinally invariant \(k_{\text{ t }}\) clustering algorithms for hadron hadron collisions. Nucl. Phys. B 406, 187–224 (1993)ADSCrossRefGoogle Scholar
  87. 87.
    S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D 48, 3160–3166 (1993). arXiv:hep-ph/9305266Google Scholar
  88. 88.
    M. Cacciari, G.P. Salam, Dispelling the \(N^{3}\) myth for the \(k_{\text{ t }}\) jet-finder. Phys. Lett. B 641, 57–61 (2006). arXiv:hep-ph/0512210Google Scholar
  89. 89.
    Y.L. Dokshitzer et al., Better jet clustering algorithms, JHEP 9708, 001 (1997). arXiv:hep-ph/9707323Google Scholar
  90. 90.
    M. Wobisch, T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering. arXiv:hep-ph/9907280Google Scholar
  91. 91.
    ATLAS Collaboration, Jet Reconstruction Performance. ATL-PHYS-PUB-2009-012 (2009).
  92. 92.
    T. Kluge, K. Rabbertz, M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits. arXiv:hep-ph/0609285Google Scholar
  93. 93.
    E. Fermi, High-energy nuclear events. Prog. Theor. Phys. 5, 570–583 (1950)MathSciNetADSCrossRefGoogle Scholar
  94. 94.
    L. Landau, On the multiparticle production in high-energy collisions. Izv. Akad. Nauk Ser. Fiz. 17, 51–64 (1953)Google Scholar
  95. 95.
    R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies. Nuovo Cim. Suppl. 3, 147–186 (1965)Google Scholar
  96. 96.
    J.C. Collins, M. Perry, Superdense matter: neutrons or asymptotically free quarks? Phys. Rev. Lett. 34, 1353 (1975)ADSCrossRefGoogle Scholar
  97. 97.
    E.V. Shuryak, Quantum chromodynamics and the theory of superdense matter. Phys. Rept. 61, 71–158 (1980)MathSciNetADSCrossRefGoogle Scholar
  98. 98.
    E.V. Shuryak, Two scales and phase transitions in quantum chromodynamics. Phys. Lett. B 107, 103 (1981)ADSCrossRefGoogle Scholar
  99. 99.
    M. LeBellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996)CrossRefGoogle Scholar
  100. 100.
    J.-P. Blaizot, E. Iancu, The quark gluon plasma: collective dynamics and hard thermal loops. Phys. Rept. 359, 355–528 (2002). arXiv:hep-ph/0101103Google Scholar
  101. 101.
    A. Bazavov et al., Equation of state and QCD transition at finite temperature. Phys. Rev. D 80, 014504 (2009). arXiv:0903.4379Google Scholar
  102. 102.
    E. Braaten, R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis. Nucl. Phys. B 337, 569 (1990)ADSCrossRefGoogle Scholar
  103. 103.
    E. Braaten, R.D. Pisarski, Simple effective Lagrangian for hard thermal loops. Phys. Rev. D 45, 1827–1830 (1992)ADSCrossRefGoogle Scholar
  104. 104.
    H.A. Weldon, Covariant calculations at finite temperature: the relativistic plasma. Phys. Rev. D 26, 1394 (1982)ADSCrossRefGoogle Scholar
  105. 105.
    A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills Gas. Phys. Lett. B 96, 289 (1980)ADSCrossRefGoogle Scholar
  106. 106.
    D.J. Gross, R.D. Pisarski, L.G. Yaffe, QCD and instantons at finite temperature. Rev. Mod. Phys. 53, 43 (1981)MathSciNetADSCrossRefGoogle Scholar
  107. 107.
    T. Lee, G. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory. Phys. Rev. D 9, 2291 (1974)ADSCrossRefGoogle Scholar
  108. 108.
    T.D. Lee, Abnormal nuclear states and vacuum excitations. Rev. Mod. Phys. 47, 267 (1975)ADSCrossRefGoogle Scholar
  109. 109.
    K. Rajagopal, F. Wilczek, The condensed matter physics of QCD. arXiv:hep-ph/0011333Google Scholar
  110. 110.
    J. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140–151 (1983)ADSCrossRefGoogle Scholar
  111. 111.
    PHENIX Collaboration, Measurement of the mid-rapidity transverse energy distribution from \(\sqrt{s_{\text{ NN }}}=130\) GeV Au+Au collisions at RHIC. Phys. Rev. Lett. 87, 052301 (2001). arXiv:nucl-ex/0104015Google Scholar
  112. 112.
    J.M. Maldacena, The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200Google Scholar
  113. 113.
    O. Aharony et al., Large \(N\) field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000). arXiv:hep-th/9905111Google Scholar
  114. 114.
    P. Danielewicz, M. Gyulassy, Dissipative phenomena in quark gluon plasmas. Phys. Rev. D 31, 53–62 (1985)ADSCrossRefGoogle Scholar
  115. 115.
    G. Policastro, D. Son, A. Starinets, The shear viscosity of strongly coupled \(N=4\) supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). arXiv:hep-th/0104066Google Scholar
  116. 116.
    P. Kovtun, D.T. Son, A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons. JHEP 0310, 064 (2003). arXiv:hep-th/0309213Google Scholar
  117. 117.
    R.J. Glauber, in Lectures in Theoretical Physics, ed. by W.E. Brittin, L.G. Dunham, vol. 1 (Interscience, New York, 1959), pp. 315Google Scholar
  118. 118.
    R. Glauber, G. Matthiae, High-energy scattering of protons by nuclei. Nucl. Phys. B 21, 135–157 (1970)ADSGoogle Scholar
  119. 119.
    W. Czyz, L. Maximon, High-energy, small angle elastic scattering of strongly interacting composite particles. Annals Phys. 52, 59–121 (1969)ADSCrossRefGoogle Scholar
  120. 120.
    M.L. Miller et al., Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). arXiv:nucl-ex/0701025Google Scholar
  121. 121.
    H. De Vries, C.W. De Jager, C. De Vries, Nuclear charge and magnetization density distribution parameters from elastic electron scattering. Atom. Data Nucl. Data Tabl. 36, 495–536 (1987)ADSCrossRefGoogle Scholar
  122. 122.
    A. Bialas, M. Bleszynski, W. Czyz, Multiplicity distributions in nucleus-nucleus collisions at high-energies. Nucl. Phys. B 111, 461 (1976)ADSCrossRefGoogle Scholar
  123. 123.
    J. Cronin et al., Production of Hadrons with large transverse momentum at 200 GeV, 300 GeV, and 400 GeV. Phys. Rev. D 11, 3105 (1975)ADSCrossRefGoogle Scholar
  124. 124.
    D. Antreasyan et al., Production of hadrons at large transverse momentum in 200 GeV, 300 GeV and 400 GeV pp and p+n collisions. Phys. Rev. D 19, 764–778 (1979)ADSCrossRefGoogle Scholar
  125. 125.
    J.W. Qiu, I. Vitev, Coherent QCD multiple scattering in proton-nucleus collisions. Phys. Lett. B 632, 507–511 (2006). arXiv:hep-ph/0405068Google Scholar
  126. 126.
    J.W. Qiu, G.F. Sterman, QCD and rescattering in nuclear targets. Int. J. Mod. Phys. E 12, 149 (2003). arXiv:hep-ph/0111002Google Scholar
  127. 127.
    A.H. Mueller, J.W. Qiu, Gluon recombination and shadowing at small values of x. Nucl. Phys. B 268, 427 (1986)ADSCrossRefGoogle Scholar
  128. 128.
    L. Gribov, E. Levin, M. Ryskin, Singlet structure function at small x: unitarization of gluon ladders. Nucl. Phys. B 188, 555–576 (1981)ADSCrossRefGoogle Scholar
  129. 129.
    L. Gribov, E. Levin, M. Ryskin, Semihard processes in QCD. Phys. Rept. 100, 1–150 (1983)ADSCrossRefGoogle Scholar
  130. 130.
    D.F. Geesaman, K. Saito, A.W. Thomas, The nuclear EMC effect. Ann. Rev. Nucl. Part. Sci. 45, 337–390 (1995)ADSCrossRefGoogle Scholar
  131. 131.
    L. Frankfurt, M. Strikman, Hard nuclear processes and microscopic nuclear structure. Phys. Rept. 160, 235–427 (1988)ADSCrossRefGoogle Scholar
  132. 132.
    K. Eskola, H. Paukkunen, C. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions. JHEP 0904, 065 (2009). arXiv:0902.4154Google Scholar
  133. 133.
    X.N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 44, 3501–3516 (1991)ADSCrossRefGoogle Scholar
  134. 134.
    A. Capella et al., Dual parton model. Phys. Rept. 236, 225–329 (1994)ADSCrossRefGoogle Scholar
  135. 135.
    J. Ranft, Hadron production in hadron-nucleus and nucleus-nucleus collisions in the dual Monte Carlo multichain fragmentation model. Phys. Rev. D 37, 1842 (1988)ADSCrossRefGoogle Scholar
  136. 136.
    J. Ranft, Transverse energy distributions in nucleus-nucleus collisions in the dual Monte Carlo multichain fragmentation model. Phys. Lett. B 188, 379 (1987)ADSCrossRefGoogle Scholar
  137. 137.
    B. Andersson, G. Gustafson, B. Nilsson-Almqvist, A model for low \(p_{\text{ T }}\) hadronic reactions, with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl. Phys. B 281, 289 (1987)ADSCrossRefGoogle Scholar
  138. 138.
    B. Nilsson-Almqvist, E. Stenlund, Interactions between hadrons and nuclei: the Lund Monte Carlo, Fritiof Version 1.6. Comput. Phys. Commun. 43, 387 (1987)ADSCrossRefGoogle Scholar
  139. 139.
    K. Kajantie, P. Landshoff, J. Lindfors, Minijet production in high-energy nucleus-nucleus collisions. Phys. Rev. Lett. 59, 2527 (1987)ADSCrossRefGoogle Scholar
  140. 140.
    K. Eskola, K. Kajantie, J. Lindfors, Quark and gluon production in high-energy nucleus-nucleus collisions. Nucl. Phys. B 323, 37 (1989)ADSCrossRefGoogle Scholar
  141. 141.
    X.N. Wang, Role of multiple mini-jets in high-energy hadronic reactions. Phys. Rev. D 43, 104–112 (1991)ADSCrossRefGoogle Scholar
  142. 142.
    J.D. Bjorken, fermilab-PUB-82/059-THY (1982)Google Scholar
  143. 143.
    M.H. Thoma, M. Gyulassy, Quark damping and energy loss in the high temperature QCD. Nucl. Phys. B 351, 491–506 (1991)ADSCrossRefGoogle Scholar
  144. 144.
    E. Braaten, M.H. Thoma, Energy loss of a heavy quark in the quark-gluon plasma. Phys. Rev. D 44, 2625–2630 (1991)ADSCrossRefGoogle Scholar
  145. 145.
    M.H. Thoma, Collisional energy loss of high-energy jets in the quark gluon plasma. Phys. Lett. B 273, 128–132 (1991)ADSCrossRefGoogle Scholar
  146. 146.
    D.A. Appel, Jets as a probe of quark-gluon plasmas. Phys. Rev. D 33, 717 (1986)ADSCrossRefGoogle Scholar
  147. 147.
    J. Blaizot, L.D. McLerran, Jets in expanding quark-gluon plasmas. Phys. Rev. D 34, 2739 (1986)ADSCrossRefGoogle Scholar
  148. 148.
    M. Rammerstorfer, U.W. Heinz, Jet acoplanarity as a quark-gluon plasma probe. Phys. Rev. D 41, 306–309 (1990)ADSCrossRefGoogle Scholar
  149. 149.
    N. Armesto et al., Comparison of jet quenching formalisms for a Quark-Gluon plasma ‘Brick’. arXiv:1106.1106Google Scholar
  150. 150.
    L. Landau, I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies. Dokl. Akad. Nauk Ser. Fiz. 92, 535–536 (1953)zbMATHGoogle Scholar
  151. 151.
    A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies. Phys. Rev. 103, 1811–1820 (1956)ADSCrossRefzbMATHGoogle Scholar
  152. 152.
    M. Gyulassy, M. Plumer, Jet quenching in dense matter. Phys. Lett. B 243, 432–438 (1990)ADSCrossRefGoogle Scholar
  153. 153.
    M. Gyulassy, X.N. Wang, Multiple collisions and induced gluon bremsstrahlung in QCD. Nucl. Phys. B 420, 583–614 (1994). arXiv:nucl-th/9306003Google Scholar
  154. 154.
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma. Nucl. Phys. B 483, 291–320 (1997). arXiv:hep-ph/9607355Google Scholar
  155. 155.
    B. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD. JETP Lett. 63, 952–957 (1996). arXiv:hep-ph/9607440Google Scholar
  156. 156.
    R. Baier, Jet quenching. Nucl. Phys. A 715, 209–218 (2003). arXiv:hep-ph/0209038Google Scholar
  157. 157.
    C.A. Salgado, U.A. Wiedemann, Calculating quenching weights. Phys. Rev. D 68, 014008 (2003). arXiv:hep-ph/0302184Google Scholar
  158. 158.
    M. Gyulassy, P. Levai, I. Vitev, Jet quenching in thin quark gluon plasmas. 1. Formalism. Nucl. Phys. B 571, 197–233 (2000). arXiv:hep-ph/9907461Google Scholar
  159. 159.
    M. Gyulassy, P. Levai, I. Vitev, Reaction operator approach to non-Abelian energy loss. Nucl. Phys. B 594, 371–419 (2001). arXiv:nucl-th/0006010Google Scholar
  160. 160.
    U.A. Wiedemann, Transverse dynamics of hard partons in nuclear media and the QCD dipole. Nucl. Phys. B 582, 409–450 (2000). arXiv:hep-ph/0003021Google Scholar
  161. 161.
    N. Armesto et al., Medium-evolved fragmentation functions. JHEP 0802, 048 (2008). arXiv:0710.3073Google Scholar
  162. 162.
    A.D. Polosa, C.A. Salgado, Jet shapes in opaque media. Phys. Rev. C 75, 041901 (2007). arXiv:hep-ph/0607295Google Scholar
  163. 163.
    K.C. Zapp, U.A. Wiedemann, Coherent radiative parton energy loss beyond the BDMPS-Z Limit. arXiv:1202.1192Google Scholar
  164. 164.
    N. Armesto, L. Cunqueiro, C.A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation. Eur. Phys. J. C 63, 679–690 (2009). arXiv:0907.1014Google Scholar
  165. 165.
    A. Dainese, C. Loizides, G. Paic, Leading-particle suppression in high energy nucleus-nucleus collisions. Eur. Phys. J. C 38, 461–474 (2005). arXiv:hep-ph/0406201Google Scholar
  166. 166.
    C. Loizides, High transverse momentum suppression and surface effects in Cu+Cu and Au+Au collisions within the PQM model. Eur. Phys. J. C 49, 339–345 (2007). arXiv:hep-ph/0608133Google Scholar
  167. 167.
    K. Zapp et al., A Monte Carlo Model for ‘Jet Quenching’. Eur. Phys. J. C 60, 617–632 (2009). arXiv:0804.3568Google Scholar
  168. 168.
    I. Lokhtin, A. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-p(T) hadron spectra at RHIC. Eur. Phys. J. C 45, 211–217 (2006). arXiv:hep-ph/0506189Google Scholar
  169. 169.
    P.B. Arnold, G. D. Moore, and L. G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results. JHEP 0011, 001 (2000). arXiv:hep-ph/0010177Google Scholar
  170. 170.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. JHEP 0111, 057 (2001). arXiv:hep-ph/0109064Google Scholar
  171. 171.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results. JHEP 0112, 009 (2001). arXiv:hep-ph/0111107Google Scholar
  172. 172.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon and gluon emission in relativistic plasmas. JHEP 0206, 030 (2002). arXiv:hep-ph/0204343Google Scholar
  173. 173.
    S. Jeon, G.D. Moore, Energy loss of leading partons in a thermal QCD medium. Phys. Rev. C 71, 034901 (2005). arXiv:hep-ph/0309332Google Scholar
  174. 174.
    S. Turbide, C. Gale, S. Jeon, G.D. Moore, Energy loss of leading hadrons and direct photon production in evolving quark-gluon plasma, Phys. Rev. C 72, 014906 (2005). arXiv:hep-ph/0502248Google Scholar
  175. 175.
    Y. Mehtar-Tani, C.A. Salgado, K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media. Phys. Rev. Lett. 106, 122002 (2011). arXiv:1009.2965Google Scholar
  176. 176.
    U.A. Wiedemann, Jet quenching versus jet enhancement: a quantitative study of the BDMPS-Z gluon radiation spectrum. Nucl. Phys. A 690, 731–751 (2001). arXiv:hep-ph/0008241Google Scholar
  177. 177.
    W. Horowitz, B. Cole, Systematic theoretical uncertainties in jet quenching due to gluon kinematics. Phys. Rev. C 81, 024909 (2010). arXiv:0910.1823Google Scholar
  178. 178.
    P.B. Arnold, W. Xiao, High-energy jet quenching in weakly-coupled quark-gluon plasmas. Phys. Rev. D 78, 125008 (2008). arXiv:0810.1026Google Scholar
  179. 179.
    S. Caron-Huot, O(g) plasma effects in jet quenching. Phys. Rev. D 79, 065039 (2009). arXiv:0811.1603Google Scholar
  180. 180.
    I. Vitev, S. Wicks, B.W. Zhang, A theory of jet shapes and cross sections: from hadrons to nuclei. JHEP 0811, 093 (2008). arXiv:0810.2807Google Scholar
  181. 181.
    I. Vitev, B.W. Zhang, Jet tomography of high-energy nucleus-nucleus collisions at next-to-leading order. Phys. Rev. Lett. 104, 132001 (2010). arXiv:0910.1090Google Scholar
  182. 182.
    Y. He, I. Vitev, B.W. Zhang, Next-to-leading order analysis of inclusive jet and di-jet production in heavy ion reactions at the Large Hadron Collider (2012). arXiv:1105.2566Google Scholar
  183. 183.
    G. Ovanesyan, I. Vitev, An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung. JHEP 1106, 080 (2011). arXiv:1103.1074Google Scholar
  184. 184.
    S.S. Gubser, Drag force in AdS/CFT. Phys. Rev. D 74, 126005 (2006). arXiv:hep-th/0605182Google Scholar
  185. 185.
    C. Herzog, A. Karch, P. Kovtun, C. Kozcaz, L. Yaffe, Energy loss of a heavy quark moving through \(N=4\) supersymmetric Yang-Mills plasma. JHEP 0607, 013 (2006). arXiv:hep-th/0605158Google Scholar
  186. 186.
    J. Casalderrey-Solana, D. Teaney, Heavy quark diffusion in strongly coupled \(N=4\) Yang-Mills. Phys. Rev. D 74, 085012 (2006). arXiv:hep-ph/0605199Google Scholar
  187. 187.
    J. Casalderrey-Solana, D. Teaney, Transverse momentum broadening of a fast quark in a \(N=4\) Yang Mills Plasma. JHEP 0704, 039 (2007). arXiv:hep-th/0701123Google Scholar
  188. 188.
    H. Liu, K. Rajagopal, U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett. 97, 182301 (2006). arXiv:hep-ph/0605178Google Scholar
  189. 189.
    H. Liu, K. Rajagopal, U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT. JHEP 0703, 066 (2007). arXiv:hep-ph/0612168Google Scholar
  190. 190.
    N. Armesto, J.D. Edelstein, J. Mas, Jet quenching at finite ‘t Hooft coupling and chemical potential from AdS/CFT. JHEP 0609, 039 (2006). arXiv:hep-ph/0606245Google Scholar
  191. 191.
    STAR Collaboration, Centrality dependence of charged hadron and strange hadron elliptic flow from \(\sqrt{s_{\text{ NN }}}=200\) GeV Au+Au collisions. Phys. Rev. C 77, 054901 (2008). arXiv:0801.3466Google Scholar
  192. 192.
    ALICE Collaboration, Elliptic flow of charged particles in Pb+Pb collisions at \(2.76\) TeV. Phys. Rev. Lett. 105, 252302 (2010). arXiv:1011.3914Google Scholar
  193. 193.
    H. Song, S.A. Bass, U. Heinz, Elliptic flow in \(200\, {\text{ A }} \) GeV Au+Au collisions and \(2.76\,{\text{ A }} \) TeV Pb+Pb collisions: insights from viscous hydrodynamics + hadron cascade hybrid model. Phys. Rev. C 83, 054912 (2011). arXiv:1103.2380Google Scholar
  194. 194.
    ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in \(\sqrt{s_{\text{ NN }}}=2.76\) TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C (2012) . arXiv:1203.3087. Google Scholar
  195. 195.
    PHENIX Collaboration, Suppression of hadrons with large transverse momentum in central Au+Au collisions at \(\sqrt{s_{\text{ NN }}} = 130\) GeV. Phys. Rev. Lett. 88, 022301 (2002). arXiv:nucl-ex/0109003Google Scholar
  196. 196.
    PHENIX Collaboration, Suppressed \(\pi ^{0}\) production at large transverse momentum in central Au+Au collisions at \(\sqrt{s_{\text{ NN }}}=200\) GeV. Phys. Rev. Lett. 91, 072301 (2003). arXiv:nucl-ex/0304022Google Scholar
  197. 197.
    STAR Collaboration, Centrality dependence of high \(p_{\text{ T }}\) hadron suppression in Au+Au collisions at \(\sqrt{s_{\text{ NN }}} = 130\) GeV. Phys. Rev. Lett. 89, 202301 (2002). arXiv:nucl-ex/0206011Google Scholar
  198. 198.
    STAR Collaboration, Transverse momentum and collision energy dependence of high \(p_{\text{ T }}\) hadron suppression in Au+Au collisions at ultrarelativistic energies. Phys. Rev. Lett. 91, 172302 (2003). arXiv:nucl-ex/0305015Google Scholar
  199. 199.
    STAR Collaboration, Disappearance of back-to-back high\(p_{\text{ T }}\) hadron correlations in central Au+Au collisions at \(\sqrt{s_{\text{ NN }}} = 200\) GeV. Phys. Rev. Lett. 90, 082302 (2003). arXiv:nucl-ex/0210033Google Scholar
  200. 200.
    STAR Collaboration, Distributions of charged hadrons associated with high transverse momentum particles in pp and Au+Au collisions at \(\sqrt{s_{\text{ NN }}}= 200\) GeV. Phys. Rev. Lett. 95 152301 (2005). arXiv:nucl-ex/0501016Google Scholar
  201. 201.
    PHENIX Collaboration, Absence of suppression in particle production at large transverse momentum in \(\sqrt{s_{\text{ NN }}}=200\) GeV d+Au collisions. Phys. Rev. Lett. 91, 072303 (2003). arXiv:nucl-ex/0306021Google Scholar
  202. 202.
    STAR Collaboration, Evidence from d+Au measurements for final state suppression of high \(p\text{ T }\) hadrons in Au+Au collisions at RHIC. Phys. Rev. Lett. 91, 072304 (2003). arXiv:nucl-ex/0306024Google Scholar
  203. 203.
    PHENIX Collaboration, Centrality dependence of direct photon production in \(\sqrt{s_{\text{ NN }}}=200\) GeV Au+Au collisions. Phys. Rev. Lett. 94, 232301 (2005). arXiv:nucl-ex/0503003Google Scholar
  204. 204.
    K. Reygers, Characteristics of Parton Energy Loss Studied with High-\(p\text{ T }\) Particle Spectra from PHENIX. J. Phys.G G 35, 104045 (2008). arXiv:0804.4562Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsColumbia UniversityNew YorkUSA

Personalised recommendations