Advertisement

Algebraic Structure

ASM as a Monoid
  • Guglielmo PaolettiEmail author
Chapter
  • 541 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter we give a further insight in the algebraic structure of the ASM. We start in the first section recalling some notions on a number of known facts but using the formalism we will use further on.

Keywords

Recurrent Configurations Abelian Sandpile Toppling Rule Toppling Matrix Sandbox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Karmakar, S.S. Manna, Particle-hole symmetry in a sandpile model. J. Stat. Mech: Theory Exp. 2005, L01002 (2005)CrossRefGoogle Scholar
  2. 2.
    D. Dhar, S.S. Manna, Inverse avalanches in the abelian sandpile model. Phys. Rev. E 49, 2684–2687 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    S. Caracciolo, G. Paoletti, A. Sportiello, Multiple and inverse topplings in the abelian sandpile model, preprint, (2011), arXiv:1112.3491.Google Scholar
  4. 4.
    D. Dhar, P. Ruelle, S. Sen, D.N. Verma, Algebraic aspects of abelian sandpile models. J. Phys. A: Math. Gen. 28, 805 (1995)MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    S.N. Majumdar, D. Dhar, Equivalence between the abelian sandpile model and the \(q\rightarrow 0\) limit of the potts model. Physica A 185, 129–145 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    E.R. Speer, Asymmetric abeiian sandpile models. J. Stat. Phys. 71, 61–74 (1993). doi: 10.1007/BF01048088 MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Creutz, Abelian sandpiles. Comp. Phys. 5, 198–203 (1991)CrossRefGoogle Scholar
  8. 8.
    M. Creutz, Abelian sandpiles, Nucl. Phys. B (Proc. Suppl.), 20 (1991), pp. 758–761.Google Scholar
  9. 9.
    Y. Le-Borgne, D. Rossin, On the identity of the sandpile group, Discrete Mathematics. LaCIM 2000 Conference on Combinatorics, Computer Science and Applications, 256, pp. 775–790 2002Google Scholar
  10. 10.
    R. Cori, D. Rossin, On the sandpile group of dual graphs. Eur. J. Comb. 21, 447–459 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. M. Howie, An introduction to semigroup theory, Academic Press, London 1976.Google Scholar
  12. 12.
    S. Caracciolo, G. Paoletti, A. Sportiello, Conservation laws for strings in the abelian sandpile model EPL (Europhysics Letters) 90 (2010), p. 60003, arXiv:1002.3974v1 Google Scholar
  13. 13.
    S. Ostojic, Patterns formed by addition of grains to only one site of an abelian sandpile. Physica A 318, 187–199 (2003)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    D. Dhar, T. Sadhu, S. Chandra, Pattern formation in growing sandpiles. EPL (Europhys. Lett.) 85, 48002 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.LIP6 - (Université Paris 6) UPMCPARIS CEDEX 05France

Personalised recommendations