Skip to main content

A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes

  • Chapter
  • First Online:
Modeling of Carbon Nanotubes, Graphene and their Composites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 188))

Abstract

Recent research studies on the application of the nonlocal continuum theory in modeling of carbon nanotubes and graphene sheets are reviewed, and substantial nonlocal continuum models proposed for static and dynamic analyses of the nano-materials are introduced. The superiority of the nonlocal continuum theory to its local counterpart, and the necessity of calibration of the small-scale parameter as the key parameter revealing small-scale effects are discussed. The nonlocal beam, plate, and shell models are briefly presented and potential areas for future research are recommended. It is intended to provide an introduction to the development of the nonlocal continuum theory in modeling the nano-materials, survey the different nonlocal continuum models, and motivate further applications of the nonlocal continuum theory to nano-material modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adali S (2008) Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. Phys Lett A 372(35):5701–5705

    ADS  MATH  Google Scholar 

  • Amara K, Tounsi A, Mechab I, Adda-Bedia EA (2010) Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field. Appl Math Model 34(12):3933–3942

    MathSciNet  MATH  Google Scholar 

  • Ansari R, Arash B (2013) Nonlocal Fl[u-umlaut]gge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions. J Appl Mech 80(2):021006–021012

    Google Scholar 

  • Ansari R, Rajabiehfard R, Arash B (2010a) Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput Mater Sci 49(4):831–838

    Google Scholar 

  • Ansari R, Sahmani S, Arash B (2010b) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys Lett A 375(1):53–62

    ADS  Google Scholar 

  • Ansari R, Arash B, Rouhi H (2011) Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos Struct 93(9):2419–2429

    Google Scholar 

  • Antonelli GA, Maris HJ, Malhotra SG, Harper JME (2002) Picosecond ultrasonics study of the vibrational modes of a nanostructure. J Appl Phys 91(5):3261–3267

    ADS  Google Scholar 

  • Arash B, Ansari R (2010) Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Phys E 42(8):2058–2064

    Google Scholar 

  • Arash B, Wang Q (2011) Vibration of single- and double-layered graphene sheets. J Nanotechnol Eng Med 2(1):011012–011017

    Google Scholar 

  • Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51(1):303–313

    Google Scholar 

  • Arash B, Wang Q, Liew KM (2012) Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation. Comput Methods Appl Mech Eng 223–224:1–9

    MathSciNet  Google Scholar 

  • Aydogdu M (2009a) Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E 41(5):861–864

    ADS  Google Scholar 

  • Aydogdu M (2009b) A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Phys E 41(9):1651–1655

    Google Scholar 

  • Aydogdu M, Filiz S (2011) Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E 43(6):1229–1234

    ADS  Google Scholar 

  • Behfar K, Naghdabadi R (2005) Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium. Compos Sci Technol 65(7–8):1159–1164

    Google Scholar 

  • Bodily BH, CTS (2003) Structural and equivalent continuum properties of single-walled car-bon nanotubes. Int J Mater Prod Technol 18(4–6):381–397

    Google Scholar 

  • Brauns EB, Madaras ML, Coleman RS, Murphy CJ, Berg MA (2002) Complex local dynamics in DNA on the picosecond and nanosecond time scales. Phys Rev Lett 88(15):158101

    ADS  Google Scholar 

  • Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493. doi:10.1126/science.1136836

    ADS  Google Scholar 

  • ChasteJ EichlerA, MoserJ CeballosG, RuraliR BachtoldA (2012) A nanomechanical mass sensor with yoctogram resolution. Nat Nano 7(5):301–304

    Google Scholar 

  • Chiu H-Y, Hung P, Postma HWC, Bockrath M (2008) Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett 8(12):4342–4346. doi:10.1021/nl802181c

    ADS  Google Scholar 

  • Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101(2):024305–024307

    ADS  Google Scholar 

  • Duan WH, Wang Q, Wang Q, Liew KM (2010) Modeling the instability of carbon nanotubes: from continuum mechanics to molecular dynamics. J Nanotechnol Eng Med 1(1):011001–011010

    Google Scholar 

  • Duan WH, Gong K, Wang Q (2011) Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear. Carbon 49(9):3107–3112

    Google Scholar 

  • Eringen AC (1976) Nonlocal polar field models. Academic, New York

    Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    ADS  Google Scholar 

  • Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584

    ADS  Google Scholar 

  • Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6(11):858–861

    ADS  Google Scholar 

  • Filiz S, Aydogdu M (2010) Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput Mater Sci 49(3):619–627

    Google Scholar 

  • Gao Y, Hao P (2009) Mechanical properties of monolayer graphene under tensile and compressive loading. Phys E 41(8):1561–1566

    Google Scholar 

  • Gibson RF, Ayorinde EO, Wen Y-F (2007) Vibrations of carbon nanotubes and their composites: A review. Compos Sci Technol 67(1):1–28

    Google Scholar 

  • Hao MJ, Guo XM, Wang Q (2010) Small-scale effect on torsional buckling of multi-walled carbon nanotubes. Eur J Mech A Solids 29(1):49–55

    MathSciNet  Google Scholar 

  • He XQ, Kitipornchai S, Liew KM (2005) Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16(10):2086

    ADS  Google Scholar 

  • Heireche H, Tounsi A, Benzair A, Maachou M, Adda Bedia EA (2008) Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Physica E 40(8):2791–2799

    ADS  Google Scholar 

  • Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and B_{x}C_{y}N_{z} composite nanotubes. Phys Rev Lett 80(20):4502–4505

    ADS  Google Scholar 

  • Hu Y-G, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids 56(12):3475–3485

    ADS  MATH  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    ADS  Google Scholar 

  • Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104(5):2089–2092

    ADS  Google Scholar 

  • Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput Mater Sci 48(4):736–742

    Google Scholar 

  • Kiani K (2010) Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys E 42(9):2391–2401

    Google Scholar 

  • Kiani K, Mehri B (2010) Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J Sound Vib 329(11):2241–2264

    ADS  Google Scholar 

  • Kitipornchai S, He XQ, Liew KM (2005) Continuum model for the vibration of multilayered graphene sheets. Phys Rev B 72(7):075443

    ADS  Google Scholar 

  • Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58(20):14013–14019

    ADS  Google Scholar 

  • Lau K-t GuC, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos B Eng 37(6):425–436

    Google Scholar 

  • Lee H-L, Chang W-J (2009) Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Phys E 41(4):529–532

    Google Scholar 

  • Lee H-L, Hsu J-C, Chang W-J (2010) Frequency shift of carbon-nanotube-based mass sensor using nonlocal elasticity theory. Nanoscale Res Lett 5(11):1774–1778. doi:10.1007/s11671-010-9709-8

    ADS  Google Scholar 

  • Li C, Chou T-W (2003a) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499

    MATH  Google Scholar 

  • Li C, Chou T-W (2003b) Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Physical Review B 68(7):073405

    ADS  Google Scholar 

  • Li C, Chou T-W (2006) Elastic wave velocities in single-walled carbon nanotubes. Phys Rev B 73(24):245407

    ADS  Google Scholar 

  • Li R, Kardomateas GA (2007a) Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. J Appl Mech 74(3):399–405

    MATH  Google Scholar 

  • Li R, Kardomateas GA (2007b) Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model. J Appl Mech 74(6):1087–1094

    Google Scholar 

  • Liew KM, Wang Q (2007) Analysis of wave propagation in carbon nanotubes via elastic shell theories. Int J Eng Sci 45(2–8):227–241

    Google Scholar 

  • Liew KM, Wong CH, He XQ, Tan MJ, Meguid SA (2004) Nanomechanics of single and multiwalled carbon nanotubes. Phys Rev B 69(11):115429

    ADS  Google Scholar 

  • Liew KM, He XQ, Kitipornchai S (2006) Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater 54(16):4229–4236

    Google Scholar 

  • Lu Q, Huang R (2009) Nonlinear mechanics of single-atomic-layer graphene sheets. Int J Appl Mech 01(03):443–467

    Google Scholar 

  • Mohammadimehr M, Saidi AR, Ghorbanpour Arani A, Arefmanesh A, Han Q (2010) Torsional buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory. J Mech Sci Technol 24(6):1289–1299

    Google Scholar 

  • Murmu T, Adhikari S (2010) Nonlocal effects in the longitudinal vibration of double-nanorod systems. Phys E 43(1):415–422

    Google Scholar 

  • Murmu T, Pradhan SC (2009a) Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys E 41(7):1232–1239

    Google Scholar 

  • Murmu T, Pradhan SC (2009b) Buckling of biaxially compressed orthotropic plates at small scales. Mech Res Commun 36(8):933–938

    MATH  Google Scholar 

  • Murmu T, Pradhan SC (2009c) Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput Mater Sci 46(4):854–859

    Google Scholar 

  • Murmu T, Pradhan SC (2009d) Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model. Phys E 41(8):1628–1633

    Google Scholar 

  • Narendar S, Gopalakrishnan S (2009) Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes. Comput Mater Sci 47(2):526–538

    Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896

    ADS  Google Scholar 

  • Parnes R, Chiskis A (2002) Buckling of nano-fibre reinforced composites: a re-examination of elastic buckling. J Mech Phys Solids 50(4):855–879

    ADS  MATH  Google Scholar 

  • Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3–5):305–312

    Google Scholar 

  • Pradhan SC (2009) Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys Lett A 373(45):4182–4188

    ADS  MATH  Google Scholar 

  • Pradhan SC, Kumar A (2010) Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Comput Mater Sci 50(1):239–245

    Google Scholar 

  • Pradhan SC, Kumar A (2011a) Buckling analysis of single layered graphene sheet under biaxial compression using nonlocal elasticity theory and DQ method. J Comput Theory Nanosci 8(7):1325–1334

    Google Scholar 

  • Pradhan SC, Kumar A (2011b) Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos Struct 93(2):774–779

    Google Scholar 

  • Pradhan SC, Murmu T (2009) Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput Mater Sci 47(1):268–274

    Google Scholar 

  • Pradhan SC, Murmu T (2010a) Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Phys E 42(5):1293–1301

    Google Scholar 

  • Pradhan SC, Murmu T (2010b) Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. Phys E 42(7):1944–1949

    Google Scholar 

  • Pradhan SC, Phadikar JK (2009) Nonlocal elasticity theory for vibration of nanoplates. J Sound Vib 325(1–2):206–223

    ADS  Google Scholar 

  • Qian D, Wagner GJ, Liu WK, Yu M-F, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55(6):495–533

    ADS  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2–8):288–307

    MATH  Google Scholar 

  • Sánchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejón P (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59(19):12678–12688

    ADS  Google Scholar 

  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    ADS  Google Scholar 

  • Shen H-S (2010a) Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model. J Theor Biol 264(2):386–394

    ADS  Google Scholar 

  • Shen H-S (2010b) Nonlocal shear deformable shell model for bending buckling of microtubules embedded in an elastic medium. Phys Lett A 374(39):4030–4039

    ADS  MATH  Google Scholar 

  • Shen H-S, Zhang C-L (2010) Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos Struct 92(5):1073–1084

    MathSciNet  Google Scholar 

  • Shen L, Shen H-S, Zhang C-L (2010) Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput Mater Sci 48(3):680–685

    Google Scholar 

  • ÅžimÅŸek M (2010) Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E 43(1):182–191

    ADS  Google Scholar 

  • Sirtori C (2002) Applied physics: bridge for the terahertz gap. Nature 417(6885):132–133

    ADS  Google Scholar 

  • Soltani P, Taherian MM, Farshidianfar A (2010) Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium. J Phys D Appl Phys 43(42):425401

    ADS  Google Scholar 

  • Song J, Shen J, Li XF (2010) Effects of initial axial stress on waves propagating in carbon nanotubes using a generalized nonlocal model. Comput Mater Sci 49(3):518–523

    Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    ADS  Google Scholar 

  • Sudak LJ (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94(11):7281–7287

    ADS  Google Scholar 

  • Sun C, Liu K (2007) Vibration of multi-walled carbon nanotubes with initial axial loading. Solid State Commun 143(4–5):202–207

    ADS  Google Scholar 

  • Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Google Scholar 

  • Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72(2):188–190

    ADS  Google Scholar 

  • Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12):124301–124306

    ADS  Google Scholar 

  • Wang L (2009) Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Phys E 41(10):1835–1840

    Google Scholar 

  • Wang L, Hu H (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71(19):195412

    ADS  Google Scholar 

  • Wang Q, Liew KM (2007) Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A 363(3):236–242

    ADS  Google Scholar 

  • Wang Q, Varadan VK (2006a) Wave characteristics of carbon nanotubes. Int J Solids Struct 43(2):254–265

    MATH  Google Scholar 

  • Wang Q, Varadan VK (2006b) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15(2):659

    ADS  Google Scholar 

  • Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16(1):178

    ADS  Google Scholar 

  • Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18(7):075702

    ADS  Google Scholar 

  • Wang X, Yang HK, Dong K (2005) Torsional buckling of multi-walled carbon nanotubes. Mater Sci Eng, A 404(1–2):314–322

    Google Scholar 

  • Wang CM, Zhang YY, Sai Sudha R, Kitipornchai S (2006a) Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39(17):3904

    ADS  Google Scholar 

  • Wang Q, Varadan VK, Quek ST (2006b) Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys Lett A 357(2):130–135

    ADS  Google Scholar 

  • Wang Q, Zhou GY, Lin KC (2006c) Scale effect on wave propagation of double-walled carbon nanotubes. Int J Solids Struct 43(20):6071–6084

    MATH  Google Scholar 

  • Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10):105401

    ADS  Google Scholar 

  • Wang Y-Z, Li F-M, Kishimoto K (2010a) Scale effects on thermal buckling properties of carbon nanotube. Phys Lett A 374(48):4890–4893

    ADS  MATH  Google Scholar 

  • Wang Y-Z, Li F-M, Kishimoto K (2010b) Wave propagation characteristics in fluid-conveying double-walled nanotubes with scale effects. Comput Mater Sci 48(2):413–418

    Google Scholar 

  • Wang Y-Z, Li F-M, Kishimoto K (2010c) Scale effects on the longitudinal wave propagation in nanoplates. Phys E 42(5):1356–1360

    Google Scholar 

  • Xie GQ, Han X, Liu GR, Long SY (2006) Effect of small size-scale on the radial buckling pressure of a simply supported multi-walled carbon nanotube. Smart Mater Struct 15(4):1143

    ADS  Google Scholar 

  • Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514

    ADS  Google Scholar 

  • Yakobson BI, Campbell MP, Brabec CJ, Bernholc J (1997) High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput Mater Sci 8(4):341–348

    Google Scholar 

  • Yan Y, Wang WQ, Zhang LX (2010) Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field. Appl Math Model 34(11):3422–3429

    MathSciNet  MATH  Google Scholar 

  • Yang J, Jia XL, Kitipornchai S (2008) Pull-in instability of nano-switches using nonlocal elasticity theory. J Phys D Appl Phys 41(3):035103

    ADS  Google Scholar 

  • Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E 42(5):1727–1735

    Google Scholar 

  • Zhang YQ, Liu GR, Wang JS (2004) Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 70(20):205430

    ADS  Google Scholar 

  • Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71(19):195404

    ADS  Google Scholar 

  • Zhang YQ, Liu GR, Han X (2006) Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure. Phys Lett A 349(5):370–376

    ADS  Google Scholar 

  • Zhang YY, Wang CM, Duan WH, Xiang Y, Zong Z (2009a) Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20(39):395707

    ADS  Google Scholar 

  • Zhang YY, Wang CM, Tan VBC (2009b) Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics. Adv Appl Math Mech 1(1):89–106

    MathSciNet  Google Scholar 

  • Zhang Y, Wang CM, Challamel N (2010) Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model. J Eng Mech 136(5):562–574

    Google Scholar 

  • Zhen Y, Fang B (2010) Thermal–mechanical and nonlocal elastic vibration of single-walled carbon nanotubes conveying fluid. Comput Mater Sci 49(2):276–282

    Google Scholar 

Download references

Acknowledgments

This research was undertaken, in part, thanks to funding from the Canada Research Chairs Program (CRC) and the National Science and Engineering Research Council (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Arash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arash, B., Wang, Q. (2014). A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes. In: Tserpes, K., Silvestre, N. (eds) Modeling of Carbon Nanotubes, Graphene and their Composites. Springer Series in Materials Science, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-319-01201-8_2

Download citation

Publish with us

Policies and ethics