Advertisement

Quantum Influences in the Diffusive Motion of Pyrrole on Cu(111)

  • Barbara A. J. LechnerEmail author
Chapter
  • 276 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Pyrrole diffuses in channels on Cu(111), hopping between adjacent bridge sites over a barrier above hollow sites. Strong lateral interactions alter the lineshapes in helium-3 spin-echo measurements from a predicted double exponential toward an apparent single exponential decay. Molecular dynamics simulations reproduce the centre-of-mass motion of pyrrole and reveal a friction coefficient of 2.0 \(\pm \) 0.4 \(\mathrm{ps}^{-1}\). Density functional theory calculations reveal that a large contribution to the experimentally determined activation barrier of 53 \(\pm \) 4 meV arises from the quantum character of internal vibrational modes.

Keywords

Lateral Interaction Bridge Site Jump Diffusion Hollow Site High Momentum Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.A. Sánchez-Delgado, Organometallic Modeling of the Hydrodesulfurization and Hydrodenitrogenation Reactions (Kluwer Academic Publisher, Boston, 2002)Google Scholar
  2. 2.
    Y.-C. Liu, S.-J. Yang, T.C. Chuang, C.-C. Wang, Pyrrole self-assembled monolayer and orderly autopolymerization on chloride- and gold-containing nanocomplexes prepared by electrochemical methods. J. Electroanal. Chem. 570, 1–5 (2004)CrossRefGoogle Scholar
  3. 3.
    C.N. Sayre, D.M. Collard, Self-assembled monolayers of pyrrole-containing alkanethiols on gold. Langmuir 11, 302–306 (1995)CrossRefGoogle Scholar
  4. 4.
    J.D. Stenger-Smith, Intrinsically electrically conducting polymers. Synthesis, characterization, and their applications. Prog. Polym. Sci. 23, 57–79 (1998)CrossRefGoogle Scholar
  5. 5.
    A.M. Fenelon, C.B. Breslin, The electrochemical synthesis of polypyrrole at a copper electrode: Corrosion protection properties. Electrochim. Acta 47, 4467–4476 (2002)CrossRefGoogle Scholar
  6. 6.
    W. Prissanaroon, N. Brack, P. Pigram, J. Liesegang, Electropolymerisation of pyrrole on copper in aqueous media. Synth. Met. 142, 25–34 (2004)CrossRefGoogle Scholar
  7. 7.
    B.A.J. Lechner, H. Hedgeland, J. Ellis, W. Allison, M. Sacchi, S.J. Jenkins, B.J. Hinch, Quantum Influences in the Diffusive Motion of Pyrrole on Cu(111). Angewandte Chemie 125(19), 5189–5192 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Bak, D. Christensen, L. Hansen, J. Rastrup-Andersen, Microwave determination of the structure of pyrrole. J. Chem. Phys. 24(4), 720 (1956). (ISSN 00219606)ADSCrossRefGoogle Scholar
  9. 9.
    L. Nygaard, J.T. Nielsen, J. Kirchheiner, G. Maltesen, J. Rastrup-Andersen, G.O. Sørensen, Microwave spectra of isotopic pyrroles. Molecular structure, dipole moment, and \(^{14}\)N quadrupole coupling constants of pyrrole. J. Mol Struct. 3, 491–506 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    B.A. Sexton, A vibrational and TDS study of the adsorption of pyrrole, furan and thiophene on Cu(100): Evidence for \(\pi \)-bonded and inclined species. Surf. Sci. 163, 99–113 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    J. Gaudioso, W. Ho, Single-molecule vibrations, conformational changes, and electronic conductivity of five-membered heterocycles. J. Am. Chem. Soc. 123, 10095–10098 (2001)CrossRefGoogle Scholar
  12. 12.
    G.R. Schoofs, J.B. Benzinger, Reactions of pyrrole with Ni(100). Surf. Sci. 192, 373–382 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert, Chemisorption and decomposition of pyrrole on Pd(111). Surf. Sci. 369, 1–8 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    D.N. Futaba, S. Chiang, Predictions of scanning tunneling microscope images of furan and pyrrole on Pd(111). J. Vac. Sci. Technol. A 15, 1295 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    T.E. Caldwell, D.P. Land, Desulfurization, deoxygenation and denitrogenation of heterocycles by a palladium surface: A mechanistic study of thiophene, furan and pyrrole on Pd (111) using laser-induced thermal desorption with Fourier-transform mass spectrometry. Polyhedron 16, 3197 (1997)CrossRefGoogle Scholar
  16. 16.
    G. Tourillon, S. Raaen, T.A. Skotheim, M. Sagurton, R. Garrett, G.P. Williams, A near edge x-ray absorption fine structure study of the adsorption of pyrrole and N-methylpyrrole on Pt(111): Orientation and dissociation of the adsorbed molecules. Surf. Sci. 184, L345–L354 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    F.P. Netzer, E. Bertel, A. Goldmann, Structure and surface chemistry of 5-membered cyclic molecule on Rh(111): Pyrrole. Surf. Sci. 199, 87 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    W.A. Abdallah, A.E. Nelson, Pyrrole adsorption and reaction on Mo(110) and C/N-Mo(110). Surf. Sci. 585, 113–122 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    W.A. Abdallah, A.E. Nelson, Density functional theory study of pyrrole adsorption on Mo(110). J. Phys. Chem. B 109, 10863–10870 (2005)CrossRefGoogle Scholar
  20. 20.
    Oerlikon Leybold Vacuum GmbH, Bonner Strasse 498 (Bayenthal), 50968 Cologne, Germany. http://www.oerlikon.com/leyboldvacuum
  21. 21.
    Edwards Limited, Manor Royal, Crawley, West Sussex, RH10 9LW, UK. http://www.edwardsvacuum.com
  22. 22.
    P.R. Kole, H. Hedgeland, A.P. Jardine, W. Allison, J. Ellis, G. Alexandrowicz, Probing the non-pairwise interactions between CO molecules moving on a Cu(111) surface. J. Phys.: Condens. Matter 24, 104016 (2012)Google Scholar
  23. 23.
    D. Farías, K.-H. Rieder, Atomic beam diffraction from solid surfaces. Rep. Prog. Phys. 61, 1575–1664 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    E. Hulpke (ed.), Helium atom scattering from surfaces (Springer, Berlin, 1992)Google Scholar
  25. 25.
    P.A. Redhead, Thermal desorption of gases. Vacuum 12, 203 (1962)CrossRefGoogle Scholar
  26. 26.
    A.P. Jardine, J. Ellis, W. Allison, Effects of resolution and friction in the interpretation of QHAS measurements. J. Chem. Phys. 120, 8724 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    U. Harten, J.P. Toennies, C. Wöll, Helium time-of-flight spectroscopy of surface-phonon dispersion curves of the noble metals. Faraday Discuss. Chem. Soc. 80, 137 (1985)CrossRefGoogle Scholar
  28. 28.
    F.E. Tuddenham, H. Hedgeland, A.P. Jardine, B.A.J. Lechner, B.J. Hinch, W. Allison, Lineshapes in quasi-elastic scattering from species hopping between non-equivalent surface sites. Surf. Sci. 604, 1459–1475 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    C.T. Chudley, R.J. Elliot, Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77(2), 353–361 (1960)ADSCrossRefGoogle Scholar
  30. 30.
    A.P. Jardine, H. Hedgeland, G. Alexandrowicz, W. Allison, J. Ellis, Helium-3 spin-echo: Principles and application to dynamics at surfaces. Prog. Surf. Sci. 84, 323 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    P.R. Kole, Dynamics and morphology of metal and metal oxide surfaces. Ph.D. thesis, University of Cambridge (2011)Google Scholar
  32. 32.
    S. Paterson, W. Allison, H. Hedgeland, J. Ellis, A.P. Jardine, Rotation and translational motion prior to self-assembly: Dynamics of ethanethiolate on Cu(111). Phys. Rev. Lett. 106, 256101 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M. Payne, First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005)CrossRefGoogle Scholar
  34. 34.
    A. Tkatchenko, M. Scheffler, Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    J.K. Nørskov, N.D. Lang, Effective-medium theory of chemical binding: Application to chemisorption. Phys. Rev. B 21, 2131 (1980)ADSCrossRefGoogle Scholar
  36. 36.
    M. Manninen, J.K. Nørskov, M.J. Puska, C. Umrigar, Repulsive interaction of the helium atom with a metal surface. Phys. Rev. B 29, 2314 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    G. Fratesi, G. Alexandrowicz, M.I. Trioni, G.P. Brivio, W. Allison, Crucial electronic contributions to measures of surface diffusion by He atom scattering. Phys. Rev. B 77, 235444 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    J. Topping, On the mutual potential energy of a plane network of doublets. Proc. Roy. Soc. Lond. 114(726), 67 (1927)ADSCrossRefGoogle Scholar
  39. 39.
    R. Martínez-Casado, J.L. Vega, A.S. Sanz, S. Miret-Artés, Line shape broadening in surface diffusion of interacting adsorbates with quasielastic He atom scattering. Phys. Rev. Lett. 98, 216102 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    J. Ellis, A.P. Graham, The use of quasielastic helium atom scattering to study correlated motion in adsorbate overlayers. Surf. Sci. 377, 833 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    G. Alexandrowicz, P.R. Kole, E.Y.M. Lee, H. Hedgeland, R. Ferrando, A.P. Jardine, W. Allison, J. Ellis, Observation of uncorrelated microscopic motion in a strongly interacting adsorbate system. J. Am. Chem. Soc. 130, 6789–6794 (2008)CrossRefGoogle Scholar
  42. 42.
    B.A.J. Lechner, A. de Wijn, H. Hedgeland, A.P. Jardine, B.J. Hinch, W. Allison, J. Ellis, Atomic scale friction of molecular adsorbates during diffusion. J. Chem. Phys. 138, 194710 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations