The Dynamics of Cyclopentadienyl on Cu(111)

  • Barbara A. J. LechnerEmail author
Part of the Springer Theses book series (Springer Theses)


The dissociative adsorption of cyclopentadiene (C5H6) on Cu(111) yields a cyclopentadienyl (Cp) species with strongly anionic characteristics. The Cp potential energy surface and frictional coupling to the substrate are determined from measurements of dynamics of the molecule by helium-3 spin-echo. The molecule is remarkably mobile, moving in single jumps between adjacent hollow sites over an energy barrier of 41 \(\pm \) 1 meV. The data exhibit multi-component lineshapes that allow the determination of the energy difference between fcc and hcp sites of 10.6 \(\pm \) 1.7 meV in a Bayesian method probing the probability space of all data combined. Molecular dynamics simulations provide a friction coefficient of 2.5 \(\pm \) 0.5 \({\mathrm{ps}^{-1}}\).


Molecular Dynamic Simulation Hollow Site Large Momentum Transfer Dephasing Rate Potential Energy Landscape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.D. Dunitz, L.E. Orgel, A. Rich, The Crystal Structure of Ferrocene. Acta Cryst. 9, 373 (1956)CrossRefGoogle Scholar
  2. 2.
    G. Brizuela, R. Hoffmann, C\(_5\)H\(_5\) on a Pt(111) surface: Electronic structure and bonding. J. Phys. Chem. A 102, 9618 (1998)CrossRefGoogle Scholar
  3. 3.
    G. Szulczewski, S. Sanvito, G. Coey, A spin of their own. Nat. Mater. 8, 693 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    G. Witte, S. Lukas, P.S. Bagus, C. Wöll, Vacuum level alignment at organic/metal junctions: “Cushion” effect and the interface dipole. Appl. Phys. Lett. 87, 263502 (2005)Google Scholar
  5. 5.
    L. Romaner, G. Heimel, J.-L. Brédas, A. Gerlach, F. Schreiber, R.L. Johnson, J. Zegenhagen, S. Duhm, N. Koch, E. Zojer, Impact of bidirectional charge transfer and molecular distortions on the electronic structure of a metal-organic interface. Phys. Rev. Lett. 99, 256801 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    M. Sacchi, S.J. Jenkins, H. Hedgeland, A.P. Jardine, B.J. Hinch, Electronic structure and bonding of an ionic molecular adsorbate: c-C\(_5\)H\(_5\) on Cu(111). J. Phys. Chem. B 115, 16134–16141 (2011)Google Scholar
  7. 7.
    A. Haaland, Molecular structure and bonding in the 3d metallocenes. Acc. Chem. Res. 12, 415–422 (1979)CrossRefGoogle Scholar
  8. 8.
    B.E. Applegate, T.A. Miller, T.A. Barckholtz, The Jahn-Teller and related effects in the cyclopentadienyl radical. I. The ab initio calculation of spectroscopically observable parameters. J. Chem. Phys 114(11), 4855 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    P. Seiler, J.D. Dunitz, A new interpretation of the disordered crystal structure of ferrocene. Acta Cryst. B35, 1068 (1979)CrossRefGoogle Scholar
  10. 10.
    C.-H. Sun, B.E. Bent, J.G. Chen, Chemistry of cyclopentadiene on a Cu(100) surface: Detection of cyclopentadienyl (C\(_5\)H\(_5\)) species as reaction intermediates. J. Vac. Sci. Technol. A 15, 1581 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    N.R. Avery, Bonding and reactivity of cyclopentene on Pt(111). Surf. Sci. 146, 363–381 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    N.R. Avery, Cyclopentene adsorption on Pt(111): Spectroscopic identification of an adsorbed cyclopentadienyl. Surf. Sci. 137, L109–L116 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    N.R. Avery, Adsorption and reactivity of cyclopentane on Pt(111). Surf. Sci. 163, 357–368 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    N.R. Avery, Adsorption and reactivity of 1–3 cyclopentadiene on Pt(111). J. Electron Spectrosc. Relat. Phenom. 39, 1–9 (1986)CrossRefGoogle Scholar
  15. 15.
    G. Brizuela, N.J. Castellani, C\(_5\)H\(_n\) rings adsorbed on Pt(111): a theoretical study. Surf. Sci. 401, 297 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    G. Brizuela, N.J. Castellani, A theoretical study of dehydrogenation of cyclopentene on Pt(111). J. Mol. Catal. A: Chem. 139, 209–218 (1999)CrossRefGoogle Scholar
  17. 17.
    C. Becker, F. Delecq, J. Breitbach, G. Hamm, D. Franke, F. Jäger, K. Wandelt, Adsorption of Cyclopentene on Pt(111) and Ordered Pt\(_n\)Sn/Pt(111) Surface Alloys. J. Phys. Chem. B 108, 18960–18971 (2004)CrossRefGoogle Scholar
  18. 18.
    N.C. Comelli, M.B. Lopez, E.A. Castro, Theoretical study of the adsorption of C\(_5\)H\(_n\) on Ni(100) and Ni(111) surfaces. J. Mol. Struct. 726, 197 (2005)CrossRefGoogle Scholar
  19. 19.
    E. Germán, S. Simonetti, E. Pronsato, A. Juan, G. Brizuela, c-C\(_5\)H\(_5\) on a Ni(111) surface: Theoretical study of the adsorption, electronic structure and bonding. Appl. Surf. Sci. 254, 5831 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    E. Germán, I. López-Corral, A. Juan, G. Brizuela, A theoretical study of cyclopentene (c-C\(_5\)H\(_8\)) dehydrogenation to cyclopentadienyl anion (c-C\(_5\)H\(_5^-\)) on Ni(111). J. Mol. Catal. A: Chem. 314, 28–34 (2009)CrossRefGoogle Scholar
  21. 21.
    F.P. Netzer, A. Goldmann, G. Rosina, E. Bertel, Structure and surface chemistry of 5-membered cyclic molecules on Rh(111): Cyclopentene and cyclopentadiene. Surf. Sci. 204, 387 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    F.P. Netzer, G. Rosina, E. Bertel, H.B. Saalfeld, UV photoelectron spectra of adsorbed cyclopentadienyl. J. Electron Spectrosc. Relat. Phenom. 46, 373–379 (1988)CrossRefGoogle Scholar
  23. 23.
    C. Waldfried, D. Welipitiya, C.W. Hutchings, H.S.V. de Silva, G.A. Gallup, P.A. Dowben, W.W. Pai, J. Zhang, J.F. Wendelken, N.M. Boag, Preferential bonding orientations of ferrocene on surfaces. J. Phys. Chem. B 101, 9782 (1997)CrossRefGoogle Scholar
  24. 24.
    J. Choi, P.A. Dowben, Cobaltocene adsorption and dissociation on Cu(111). Surf. Sci. 600, 2997 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    K.-F. Braun, V. Iancu, N. Pertaya, K.-H. Rieder, S.-W. Hla, Decompositional incommensurate growth of ferrocene molecules on a Au(111) surface. Phys. Rev. Lett. 96, 246102 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    P.R. Kole, H. Hedgeland, A.P. Jardine, W. Allison, J. Ellis, G. Alexandrowicz, Probing the non-pairwise interactions between CO molecules moving on a Cu(111) surface. J. Phys.: Condens. Matter 24, 104016 (2012)ADSGoogle Scholar
  27. 27.
    H. Hedgeland, B.A.J. Lechner, F.E. Tuddenham, A.P. Jardine, W. Allison, J. Ellis, M. Sacchi, S.J. Jenkins, B.J. Hinch, Weak intermolecular interactions in an ionically bound molecular adsorbate: Cyclopentadienyl/Cu(111). Phys. Rev. Lett. 106, 186101 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    F.E. Tuddenham, Helium atom scattering as a probe of hydrogen adsorption and dynamics, Ph.D. thesis, University of Cambridge (2011).Google Scholar
  29. 29.
    R.B. Moffett, Cyclopentadiene and 3-chlorocyclopentadiene. Org. Synth. 32, 41 (1952)CrossRefGoogle Scholar
  30. 30.
    D. Farías, K.-H. Rieder, Atomic beam diffraction from solid surfaces. Rep. Prog. Phys. 61, 1575–1664 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    U. Harten, J.P. Toennies, C. Wöll, Helium time-of-flight spectroscopy of surface-phonon dispersion curves of the noble metals. Faraday Discuss. Chem. Soc. 80, 137 (1985)CrossRefGoogle Scholar
  32. 32.
    A.P. Jardine, H. Hedgeland, G. Alexandrowicz, W. Allison, J. Ellis, Helium-3 spin-echo: Principles and application to dynamics at surfaces. Prog. Surf. Sci. 84, 323 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    M.H. Mohamed, L.L. Kesmodel, B.M. Hall, D.L. Mills, Surface phonon dispersion on Cu(111). Phys. Rev. B 37, 2763 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    A.P. Jardine, J. Ellis, W. Allison, Effects of resolution and friction in the interpretation of QHAS measurements. J. Chem. Phys. 120, 8724 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    G. Alexandrowicz, A.P. Jardine, H. Hedgeland, W. Allison, J. Ellis, Onset of 3D Collective Surface Diffusion in the Presence of Lateral Interactions: Na/Cu(001). Phys. Rev. Lett. 97, 156103 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    H. Hedgeland, P.R. Kole, H. Davies, A.P. Jardine, G. Alexandrowicz, W. Allison, J. Ellis, G. Fratesi, G. Brivio, Surface dynamics and friction of K/Cu(001) characterized by helium-3 spin-echo and density functional theory. Phys. Rev. B 80, 1–7 (2009)CrossRefGoogle Scholar
  37. 37.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M. Payne, First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005)CrossRefGoogle Scholar
  38. 38.
    J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    J. Topping, On the mutual potential energy of a plane network of doublets. Proc. Roy. Soc. London 114(726), 67 (1927)ADSCrossRefGoogle Scholar
  40. 40.
    J. Ellis, A.P. Graham, R. Hoffmann, J.P. Toennies, Coverage dependence of the microscopic diffusion of Na atoms on the Cu(001) surface: A combined helium atom scattering experiment and molecular dynamics study. Phys. Rev. B 63, 195408 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    D. Tang, D. McIlroy, X. Shi, C. Su, D. Heskett, The structure of Na overlayers on Cu(111) at room temperature. Surf. Sci. 255, L497 (1991)ADSCrossRefGoogle Scholar
  42. 42.
    J. Ellis, A.P. Graham, The use of quasielastic helium atom scattering to study correlated motion in adsorbate overlayers. Surf. Sci. 377, 833 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    G. Alexandrowicz, P.R. Kole, E.Y.M. Lee, H. Hedgeland, R. Ferrando, A.P. Jardine, W. Allison, J. Ellis, Observation of uncorrelated microscopic motion in a strongly interacting adsorbate system. J. Am. Chem. Soc. 130, 6789–6794 (2008)CrossRefGoogle Scholar
  44. 44.
    H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284 (1940)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    A.P. Jardine, G. Alexandrowicz, H. Hedgeland, R.D. Diehl, W. Allison, J. Ellis, Vibration and diffusion of Cs atoms on Cu(001). J. Phys.: Condens. Matter 19, 305010 (2007)Google Scholar
  46. 46.
    H. Hedgeland, P. Fouquet, A.P. Jardine, G. Alexandrowicz, W. Allison, J. Ellis, Measurement of single-molecule frictional dissipation in a prototypical nanoscale system. Nat. Phys. 5, 561 (2009)CrossRefGoogle Scholar
  47. 47.
    B.A.J. Lechner, A.S. de Wijn, H. Hedgeland, A.P. Jardine, B.J. Hinch, W. Allison, J. Ellis, Atomic scale friction of molecular adsorbates during diffusion. J. Chem. Phys. 138, 194710 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    F.E. Tuddenham, H. Hedgeland, A.P. Jardine, B.A.J. Lechner, B.J. Hinch, W. Allison, Lineshapes in quasi-elastic scattering from species hopping between non-equivalent surface sites. Surf. Sci. 604, 1459–1475 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    D.S. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial (Oxford University Press, Oxford, 2006)Google Scholar
  50. 50.
    B.A.J. Lechner, P. R. Kole, H. Hedgeland, A. P. Jardine, W. Allison, B. J. Hinch and J. Ellis, Ultra-High Precision Determination of Site Energy Differences Using a Bayesian Method, Phys. Rev. B 89, 121405(R) (2014).Google Scholar
  51. 51.
    J.L. Vega, R. Guantes, S. Miret-Artés, Quasielastic and low vibrational lineshapes in atom-surface diffusion. J. Phys. Condens. Matter 16, s2879–s2894 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    J.L. Vega, R. Guantes, S. Miret-Artés, D.A. Micha, Collisional line shapes for low frequency vibrations of adsorbates on a metal surface. J. Chem. Phys. 121, 8580 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    M.E. Tuckermann, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, Oxford, 2010)Google Scholar
  54. 54.
    J. Ellis, A.P. Graham, J.P. Toennies, Quasielastic Helium Atom Scattering from a Two-Dimensional Gas of Xe Atoms on Pt(111). Phys. Rev. Lett. 82, 5072–5075 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    A.P. Jardine, H. Hedgeland, D. Ward, Y. Xiaoqing, W. Allison, J. Ellis, G. Alexandrowicz, Probing molecule-surface interactions through ultra-fast adsorbate dynamics: propane/Pt(111). New J. Phys. 10, 125026 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations