Advertisement

The Helium-3 Spin-Echo Experiment

  • Barbara A. J. LechnerEmail author
Chapter
  • 268 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Helium-3 spin-echo (HeSE) spectroscopy is a versatile tool that enables the investigation of surface dynamics such as adsorbate diffusion and vibration on atomic length- and pico- to nanosecond timescales. As a scattering technique, HeSE measures in momentum transfer space, which can make data analysis a complex matter. To facilitate the interpretation of experimental results, the physical principles underlying the scattering process are described and an outline of the most common analysis techniques is given.

Keywords

Helium Atom Bridge Site Jump Diffusion Hollow Site Helium Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.P. Jardine, S. Dworski, P. Fouquet, G. Alexandrowicz, D.J. Riley, G.Y.H. Lee, J. Ellis, W. Allison, Ultrahigh-resolution spin-echo measurements of surface potential energy landscapes. Science 304, 1790 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A.P. Jardine, H. Hedgeland, G. Alexandrowicz, W. Allison, J. Ellis, Helium-3 spin-echo: principles and application to dynamics at surfaces. Prog. Surf. Sci. 84, 323 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    A.P. Jardine, J. Ellis, W. Allison, Quasi-elastic helium-atom scattering from surfaces: experiment and interpretation. J. Phys. Condens. Matter 14, 6173–6191 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    A.P. Jardine, G. Alexandrowicz, H. Hedgeland, W. Allison, J. Ellis, Studying the microscopic nature of diffusion with helium-3 spin-echo. Phys. Chem. Chem. Phys. 11, 3355 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Farías, K.-H. Rieder, Atomic beam diffraction from solid surfaces. Rep. Prog. Phys. 61, 1575–1664 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    A.P. Graham, The low energy dynamics of adsorbates on metal surfaces investigated with helium atom scattering. Surf. Sci. Rep. 49, 115–168 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    G. Alexandrowicz, A.P. Jardine, Helium spin-echo spectroscopy: studying surface dynamics with ultra-high-energy resolution. J. Phys. Condens. Matter 19, 305001 (2007)CrossRefGoogle Scholar
  8. 8.
    M.J. Bée, Quasielastic Neutron Scattering (Hilger, Bristol, 1988)Google Scholar
  9. 9.
    L. Van Hove, Correlations in space and time and born approximation scattering in systems of interacting particles. Phys. Rev. 95(1), 249–262 (1954)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    G. Vineyard, Scattering of slow neutrons by a liquid. Phys. Rev. 110(5), 999–1010 (1958)ADSCrossRefGoogle Scholar
  11. 11.
    J.W.M. Frenken, B.J. Hinch, J.P. Toennies, He scattering study of diffusion at a melting surface. Surf. Sci. 211/212, 21–30 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    M. DeKieviet, D. Dubbers, C. Schmidt, D. Scholz, U. Spinola, \(^3\)He spin echo: new atomic beam technique for probing phenomena in the neV range. Phys. Rev. Lett. 75, 1919–1922 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    M. DeKieviet, D. Dubbers, M. Klein, C. Schmidt, M. Skrzipczyk, Surface science using molecular beam spin echo. Surf. Sci. 377–379, 112–117 (1997)Google Scholar
  14. 14.
    F. Mezei, Neutron spin echo: a new concept in polarized thermal neutron techniques. Z. Physik 255, 146 (1972)Google Scholar
  15. 15.
    P. Fouquet, A.P. Jardine, S. Dworski, G. Alexandrowicz, W. Allison, J. Ellis, Thermal energy \(^3\)He spin-echo spectrometer for ultrahigh resolution surface dynamics measurements. Rev. Sci. Instrum. 76, 53109 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    H. Hedgeland, A.P. Jardine, W. Allison, J. Ellis, Anomalous attenuation at low temperatures in a high intensity helium beam source. Rev. Sci. Instrum. 76, 123111 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    H. Hedgeland, P.R. Kole, W. Allison, J. Ellis, A.P. Jardine, An improved high intensity recycling helium-3 beam source. Rev. Sci. Instrum. 80, 76110 (2009)CrossRefGoogle Scholar
  18. 18.
    A.P. Jardine, P. Fouquet, J. Ellis, W. Allison, Hexapole magnet system for thermal energy \(^3\)He atom manipulation. Rev. Sci. Instrum. 72(10), 3834–3841 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    P.R. Kole, Dynamics and morphology of metal and metal oxide surfaces. Ph.D. thesis, University of Cambridge 2011Google Scholar
  20. 20.
    H. Hedgeland, The Development of Quasi-Elastic Helium-3 Spin-Echo Spectroscopy as a Tool for the Study of Surface Dynamics. Ph.D. thesis, University of Cambridge 2006Google Scholar
  21. 21.
    A.R. Alderwick, A.P. Jardine, H. Hedgeland, D.A. MacLaren, W. Allison, J. Ellis, Simulation and analysis of solenoidal ion sources. Rev. Sci. Instrum. 79, 123301 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D.M. Chisnall, A high sensitivity detector for helium atom scattering. Ph.D. thesis, University of Cambridge 2012Google Scholar
  23. 23.
    A.P. Jardine, G. Alexandrowicz, H. Hedgeland, R.D. Diehl, W. Allison, J. Ellis, Vibration and diffusion of Cs atoms on Cu(001). J. Phys. Condens. Matter 19, 305010 (2007)CrossRefGoogle Scholar
  24. 24.
    D.J. Ward, A study of spin-echo lineshapes in helium atom scattering from adsorbates. Ph.D. thesis, University of Cambridge 2013Google Scholar
  25. 25.
    J.L. Vega, R. Guantes, S. Miret-Artés, D.A. Micha, Collisional line shapes for low frequency vibrations of adsorbates on a metal surface. J. Chem. Phys. 121, 8580 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    R. Martínez-Casado, J.L. Vega, A.S. Sanz, S. Miret-Artés, Line shape broadening in surface diffusion of interacting adsorbates with quasielastic He atom scattering. Phys. Rev. Lett. 98, 216102 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    E.M. McIntosh, P.R. Kole, M. El-Batanouny, D.M. Chisnall, J. Ellis, W. Allison, Measurement of the phason dispersion of misfit dislocations on the Au(111) surface. Phys. Rev. Lett. 110, 086103 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    R. Gomer, Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 53, 917–1002 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    T. Ala-Nissila, R. Ferrando, S.C. Ying, Collective and single particle diffusion on surfaces. Adv. Phys. 51(3), 949 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    C.T. Chudley, R.J. Elliot, Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77(2), 353–361 (1960)ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Rowe, K. Sköld, H.E. Flotow, J.J. Rush, Quasielastic neutron scattering by hydrogen in the \(\alpha \) and \(\beta \) phases of vanadium hydride. J. Phys. Chem. Solids 32, 41–54 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    O.G. Randl, B. Sepiol, G. Vogl, R. Feldwisch, K. Schroeder, Quasielastic Mössbauer spectroscopy and quasielastic neutron scattering from non-Bravais lattices with differently occupied sublattices. Phys. Rev. B 49, 8768 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    F.E. Tuddenham, H. Hedgeland, A.P. Jardine, B.A.J. Lechner, B.J. Hinch, W. Allison, Lineshapes in quasi-elastic scattering from species hopping between non-equivalent surface sites. Surf. Sci. 604, 1459–1475 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    U. Harten, J.P. Toennies, C. Wöll, Helium time-of-flight spectroscopy of surface-phonon dispersion curves of the noble metals. Faraday Discuss. Chem. Soc. 80, 137 (1985)CrossRefGoogle Scholar
  35. 35.
    P.G. De Gennes, Liquid dynamics and inelastic scattering of neutrons. Physica 25, 825–839 (1959)ADSCrossRefGoogle Scholar
  36. 36.
    J. Ellis, A.P. Graham, The use of quasielastic helium atom scattering to study correlated motion in adsorbate overlayers. Surf. Sci. 377, 833 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    G. Alexandrowicz, P.R. Kole, E.Y.M. Lee, H. Hedgeland, R. Ferrando, A.P. Jardine, W. Allison, J. Ellis, Observation of uncorrelated microscopic motion in a strongly interacting adsorbate system. J. Am. Chem. Soc. 130, 6789–6794 (2008)CrossRefGoogle Scholar
  38. 38.
    P.R. Kole, H. Hedgeland, A.P. Jardine, W. Allison, J. Ellis, G. Alexandrowicz, Probing the nonpairwise interactions between CO molecules moving on a Cu(111) surface. J. Phys. Condens. Matter 24, 104016 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284 (1940)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations