Security and Infiltration of Networks: A Structural Controllability and Observability Perspective

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 449)


This paper examines the role of structural controllability (s-controllability) in the design of secure linear-time-invariant networked systems. We reason about secure network design in the face of two attack vectors: a “Disrupt” attack where the infiltrator’s objective is to perturb the network to render it unusable, and a “Highjack and eavesdrop” attack to actively control and probe the network. For the former attack, strong s-controllable input sets are chosen to control the network to provide robustness to these attacks. Weak s-controllable input sets are selected by infiltrators for the “Highjack and eavesdrop” attack so as to generically guarantee a successful attack. We provide necessary and sufficient conditions for weak and strong s-controllability involving matchings over a bipartite graph representation of the network. We also provide a brief analysis of s-controllability over special families of networks.


Strong structural controllability Weak structural controllability Network controllability Network observability Constrained matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ganguly, N., Deutsch, A., Mukherjee, A.: Dynamics On and Of Complex Networks: Applications to Biology, Computer Science, and the Social Sciences. Birkhauser, Boston (2009)Google Scholar
  3. 3.
    Kocarev, L., Vattay, G.: Complex Dynamics in Communication Networks. Springer, Berlin (2005)CrossRefGoogle Scholar
  4. 4.
    Fagiolini, A., Valenti, G., Pallottino, L., Dini, G., Bicchi, A.: Decentralized intrusion detection for secure cooperative multi-agent systems. In: Proc. 46th IEEE Conference on Decision and Control, pp. 1553–1558 (2007)Google Scholar
  5. 5.
    Sundaram, S., Hadjicostis, C.N.: Distributed function calculation via linear iterations in the presence of malicious agents - part I: attacking the network. In: Proc. American Control Conference, pp. 1350–1355 (2008)Google Scholar
  6. 6.
    Pasqualetti, F., Bicchi, A., Bullo, F.: Distributed intrusion detection for secure consensus computations. In: Proc. 46th IEEE Conference on Decision and Control, pp. 5594–5599 (2007)Google Scholar
  7. 7.
    Pasqualetti, F., Bicchi, A., Bullo, F.: On the security of linear consensus networks. In: Proc. 48th IEEE Conference on Decision and Control, pp. 4894–4901 (2009)Google Scholar
  8. 8.
    Gueye, A., Walrand, J.C.: Security in networks: A game-theoretic approach. In: Proc. 47th IEEE Conference on Decision and Control, pp. 829–834 (2008)Google Scholar
  9. 9.
    Bloem, M., Alpcan, T., Basar, T.: Optimal and robust epidemic response for multiple networks. In: Proc. 46th IEEE Conference on Decision and Control, pp. 5074–5079 (2007)Google Scholar
  10. 10.
    Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proc. 22nd International Symposium on Reliable Distributed Systems, pp. 25–34 (2003)Google Scholar
  11. 11.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rahmani, A., Mesbahi, M.: Pulling the strings on agreement: anchoring, controllability, and graph automorphisms. In: Proc. American Control Conference, pp. 2738–2743 (2007)Google Scholar
  13. 13.
    Parlangeli, G., Notarstefano, G.: Observability and reachability of grid graphs via reduction and symmetries. In: 50th IEEE Conference on Decision and Control, pp. 5923–5928 (2011)Google Scholar
  14. 14.
    Nabi-Abdolyousefi, M., Mesbahi, M.: On the controllability properties of circulant Networks. IEEE Transactions on Automatic Control (to appear)Google Scholar
  15. 15.
    Zhang, S., Camlibel, M., Cao, M.: Controllability of diffusively-coupled multi-agent systems with general and distance regular coupling topologies. In: 50th IEEE Conference on Decision and Control, pp. 759–764 (2011)Google Scholar
  16. 16.
    Lin, C.-T.: Structural Controllability. IEEE Transactions on Automatic Control AC-19(3), 201–208 (1974)Google Scholar
  17. 17.
    Mayeda, H., Yamada, T.: Strong structural controllability. SIAM Journal on Control and Optimization 17(1), 123–138 (1979)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473(7346), 167–173 (2011)CrossRefGoogle Scholar
  19. 19.
    Chapman, A., Mesbahi, M.: Strong structural controllability of networked dynamics. In: Proc. American Control Conference (to appear, 2013)Google Scholar
  20. 20.
    Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, NJ (2010)MATHGoogle Scholar
  21. 21.
    Chen, C.-T.: Linear Systems Theory and Design. Oxford University Press, New York (1999)Google Scholar
  22. 22.
    Paige, C.: Properties of numerical algorithms related to computing controllability. IEEE Transactions on Automatic Control 26(1), 130–138 (1981)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Shields, R., Pearson, J.: Structural controllability of multiinput linear systems. IEEE Transactions on Automatic Control 21(2), 203–212 (1976)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Cantó, R., Boix, M., Ricarte, B.: On the Minimal Rank Completion Problem for Pattern Matrices. WSEAS Transactions on Mathematics 3(3), 711–716 (2004)MathSciNetGoogle Scholar
  25. 25.
    Hershkowitz, D., Schneider, H.: Ranks of zero patterns and sign patterns. Linear and Multilinear Algebra 34(90), 3–19 (1993)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Golumbic, M., Hirst, T., Lewenstein, M.: Uniquely restricted matchings. Algorithmica 31(2), 139–154 (2001)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Micali, S., Vazirani, V.V.: An \({O}(\sqrt{|V|}|{E}|)\) algoithm for finding maximum matching in general graphs. In: 21st Annual Symposium on Foundations of Computer Science, pp. 17–27 (October 1980)Google Scholar
  28. 28.
    Mucha, M., Sankowski, P.: Maximum Matching via Gaussian Elimination. In: 45th IEEE Symp. Foundations of Computer Science, pp. 248–255 (2004)Google Scholar
  29. 29.
    Even, S.: Graph Algorithms. Cambridge University Press, New York (2011)CrossRefGoogle Scholar
  30. 30.
    Wang, K., Michel, A.: Necessary and sufficient conditions for the controllability and observability of a class of linear, time-invariant systems with interval plants. IEEE Transactions on Automatic Control 39(7), 1443–1447 (1994)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Reinschke, K.J., Svaricek, F., Wend, H.-D.: On strong structural controllability of linear systems. In: Proceedings of the 31st IEEE Conference on Decision and Control, vol. (1), pp. 203–206 (1992)Google Scholar
  32. 32.
    Mishra, S.: On the Maximum Uniquely Restricted Matching for Bipartite Graphs. Electronic Notes in Discrete Mathematics 37, 345–350 (2011)CrossRefGoogle Scholar
  33. 33.
    Olesky, D.D., Tsatsomeros, M., van den Driessche, P.: Qualitative controllability and uncontrollability by a single entry. Linear Algebra and its Applications 187, 183–194 (1993)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.William E. Boeing Department of Aeronautics and AstronauticsUniversity of WashingtonSeattleUSA

Personalised recommendations