Evidence Theory Based Multidisciplinary Robust Optimization for Micro Mars Entry Probe Design

  • Liqiang Hou
  • Yuanli Cai
  • Rongzhi Zhang
  • Jisheng Li
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 227)


A robust multi-fidelity optimization method for micro Mars entry probe design is presented in this paper. In the robust design, aerodynamic and atmospheric model are assumed to be affected by epistemic uncertainties (partial or complete lack of knowledge). Evidence Theory is employed to quantify the uncertainties, and formulate the robust design into a multi-objective optimization problem. The optimization objectives are set to minimize interior temperature of Thermal Protection Systems (TPS), while maximize its belief value under uncertainty. A population based Multi-objective Estimation of Distribution Algorithm (MOEDA) is designed for searching robust Pareto front. In this algorithm, affinitive propagation clustering method divides adaptively the population into clusters. In each cluster, local Principal Component Analysis (PCA) is adopted for estimation of distribution, and reproducing individuals. Variable-fidelity aerodynamic model management is integrated into the robust optimizations. The fidelity management model uses analytical aerodynamic model first to initialize the optimization searching direction. With the development of the optimization, more data from high-accuracy model (CFD) are put into aerodynamic database. Artificial Neural Network (ANN) based surrogate model is used for reducing the computational cost. Finally, an application of the proposed optimization strategy for a micro probe with diameter no more than 0.8 meter is presented.


robust optimization multidisciplinary design Mars reentry probe evidence theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saleh, J.H., Mark, G., Jordan, N.C.: Flexibility: a multi-disciplinary literature review and a research agenda for designing flexible engineering systems. Journal of Engineering Design 20(3), 307–323 (2009)CrossRefGoogle Scholar
  2. 2.
    Ravanbakhsh, A., Mortazavi, M., Roshanian, J.: Multidisciplinary design optimization approach to conceptual design of a leo earth observation microsatellite. In: Proceeding of AIAA SpaceOps 2008 Conference (2008)Google Scholar
  3. 3.
    Balesdent, M., Bérend, N., Dépincé, P.: Stagewise multidisciplinary design optimization formulation for optimal design of expendable launch vehicles. Journal of Spacecraft and Rockets 49(4), 720–730 (2012)CrossRefGoogle Scholar
  4. 4.
    Roshanian, J., Jodei, J., Mirshams, M., Ebrahimi, R., Mirzaee, M.: Multi-level of fidelity multi-disciplinary design optimization of small, solid-propellant launch vehicles. Transactions of the Japan Society for Aeronautical and Space Sciences 53(180), 73–83 (2010)CrossRefGoogle Scholar
  5. 5.
    Huang, C.H., Galuski, J., Bloebaum, C.L.: Multi-objective pareto concurrent subspace optimization for multidisciplinary design. AIAA Journal 45(8), 1894–1906 (2007)CrossRefGoogle Scholar
  6. 6.
    Dufresne, S., Johnson, C., Mavris, D.N.: Variable fidelity conceptual design environment for revolutionary unmanned aerial vehicles. Journal of Aircraft 45(4), 1405–1418 (2008)CrossRefGoogle Scholar
  7. 7.
    Nguyen, N.V., Choi, S.M., Kim, W.S., Lee, J.W., Kim, S., Neufeld, D., Byun, Y.H.: Multidisciplinary unmanned combat air vehicle system design using multi-fidelity model. Aerospace Science and Technology (2012)Google Scholar
  8. 8.
    Mueller, J.B., Larsson, R.: Collision avoidance maneuver planning with robust optimization. In: International ESA Conference on Guidance, Navigation and Control Systems, Tralee, County Kerry, Ireland (2008)Google Scholar
  9. 9.
    Lantoine, G., Russell, R.P.: A hybrid differential dynamic programming algorithm for robust low-thrust optimization. In: AAS/AIAA Astrodynamics Specialist Conference and Exhibit (2008)Google Scholar
  10. 10.
    Vasile, M.: Robust mission design through evidence theory and multiagent collaborative search. Annals of the New York Academy of Sciences 1065(1), 152–173 (2005)CrossRefGoogle Scholar
  11. 11.
    Croisard, N., Vasile, M., Kemble, S., Radice, G.: Preliminary space mission design under uncertainty. Acta Astronautica 66(5), 654–664 (2010)CrossRefGoogle Scholar
  12. 12.
    Agarwal, H., Renaud, J.E., Preston, E.L., Padmanabhan, D.: Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliability Engineering & System Safety 85(1), 281–294 (2004)CrossRefGoogle Scholar
  13. 13.
    Roncoli, R.B., Ludwinski, J.M.: Mission design overview for the mars exploration rover mission. In: 2002 Astrodynamics Specialist Conference (2002)Google Scholar
  14. 14.
    Anderson, J.D.: Hypersonic and high temperature gas dynamics. Aiaa (2000)Google Scholar
  15. 15.
    Mitcheltree, R., DiFulvio, M., Horvath, T., Braun, R.: Aerothermal heating predictions for mars microprobe. AIAA Paper (98-0170) (1998)Google Scholar
  16. 16.
    Amar, A.J., Blackwell, B.F., Edwards, J.R.: One-dimensional ablation using a full newton’s method and finite control volume procedure. Journal of Thermophysics and Heat Transfer 22(1), 71–82 (2008)CrossRefGoogle Scholar
  17. 17.
    Hankey, W.L.: Re-entry aerodynamics. Aiaa (1988)Google Scholar
  18. 18.
    Hartleib, G.: Tpsx materials properties database. NASA,
  19. 19.
    Oberkampf, W., Helton, J.C.: Investigation of evidence theory for engineering applications. In: Non-Deterministic Approaches Forum, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2002)Google Scholar
  20. 20.
    Limbourg, P.: Multi-objective optimization of problems with epistemic uncertainty. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 413–427. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Zhang, Q., Zhou, A., Jin, Y.: Rm-meda: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation 12(1), 41–63 (2008)CrossRefGoogle Scholar
  22. 22.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  24. 24.
    Vasile, M., Minisci, E., Wijnands, Q.: Approximated computation of belief functions for robust design optimization. arXiv preprint arXiv:1207.3442 (2012)Google Scholar
  25. 25.
    Cheng, Q.S., Bandler, J.W., Koziel, S.: Combining coarse and fine models for optimal design. IEEE Microwave Magazine 9(1), 79–88 (2008)CrossRefGoogle Scholar
  26. 26.
    Koziel, S., Ogurtsov, S.: Robust multi-fidelity simulation-driven design optimization of microwave structures. In: 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), pp. 201–204. IEEE (2010)Google Scholar
  27. 27.
    Desai, P.N., Knocke, P.C.: Mars exploration rovers entry, descent, and landing trajectory analysis. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 16–19 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Liqiang Hou
    • 1
    • 2
  • Yuanli Cai
    • 1
  • Rongzhi Zhang
    • 2
  • Jisheng Li
    • 1
  1. 1.Xi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory of Astronautic DynamicsXi’anChina

Personalised recommendations