Skip to main content

Logarithmic-Time Updates in SMS-EMOA and Hypervolume-Based Archiving

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 227)

Abstract

The hypervolume indicator is frequently used in selection procedures of evolutionary multi-criterion optimization algorithms (EMOA) and in bounded size archivers for Pareto non-dominated points. We propose and study an algorithm that updates all hypervolume contributions and identifies a minimal hypervolume contributor after the removal or insertion of a single point in ℝ2 in amortized time complexity O(logn). This algorithm will be tested for the efficient update of bounded-size archives and for a fast implementation of the steady state selection in the bi-criterion SMS-EMOA. To achieve an amortized time complexity of O(logn) for SMS-EMOA iterations a constant-time update method for establishing a ranking among dominated solutions is suggested as an alternative to non-dominated sorting. Besides the asymptotical analysis, we discuss empirical results on several test problems and discuss the impact of the overhead caused by maintaining additional AVL tree data structures, including scalability studies with very large population size that will yield high resolution approximations.

Keywords

  • Pareto Front
  • Objective Vector
  • Binary Search Tree
  • Sorting Order
  • True Pareto Front

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evolutionary Computation 13(5), 1075–1082 (2009)

    CrossRef  Google Scholar 

  2. Bradstreet, L., Barone, L., While, L.: Updating exclusive hypervolume contributions cheaply. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, pp. 538–544. IEEE Press, Piscataway (2009)

    CrossRef  Google Scholar 

  3. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 6–20. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  4. Bringmann, K., Friedrich, T.: An efficient algorithm for computing hypervolume contributions. Evol. Comput. 18(3), 383–402 (2010)

    CrossRef  Google Scholar 

  5. da Fonseca, V.G., Fonseca, C.M.: The relationship between the covered fraction, completeness and hypervolume indicators. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 25–36. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  6. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Hoboken (2001)

    MATH  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm, Nsga-ii (2000)

    Google Scholar 

  8. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: 2005 Intl. Conference, pp. 62–76. Springer (March 2005)

    Google Scholar 

  9. Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 121–135. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  10. Fonseca, C.M., Paquete, L., Lopez-Ibanez, M.: An improved dimension-sweep algorithm for the hypervolume indicator, pp. 1157–1163 (July 2006)

    Google Scholar 

  11. Landis, E.M., Adelson-Velskii, G.: An algorithm for the organization of information. Proceedings of the USSR Academy of Sciences 146, 263–266

    Google Scholar 

  12. Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.M.: A fast dimension-sweep algorithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82 (2012)

    Google Scholar 

  13. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

    CrossRef  Google Scholar 

  14. Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded archiving using the Lebesgue measure. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2490–2497. IEEE Press (2003)

    Google Scholar 

  15. Naujoks, B., Beume, N., Emmerich, M.T.M.: Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces, vol. 2, pp. 1282–1289 (September 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Hupkens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Hupkens, I., Emmerich, M. (2013). Logarithmic-Time Updates in SMS-EMOA and Hypervolume-Based Archiving. In: Emmerich, M., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, vol 227. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01128-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01128-8_11

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01127-1

  • Online ISBN: 978-3-319-01128-8

  • eBook Packages: EngineeringEngineering (R0)