Skip to main content

The Role of Force Perception and Backdrivability in Robot Interaction

  • Chapter
  • First Online:
Increasing Perceptual Skills of Robots Through Proximal Force/Torque Sensors

Part of the book series: Springer Theses ((Springer Theses))

  • 957 Accesses

Abstract

As human started to think of robot, safety was already one of the most important issues to achieve. It was the 1942 when Isaac Asimov introduced the laws of robotics in his Runaround story.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alami, R., Albu-Schaeffer, A., Bicchi, A., Bischoff, R., Chatila, R., Luca, A. D., et al. (2006). Safe and dependable physical human-robot interaction in anthropic domains: state of the art and challenges. In A. Bicchi & A. D. Luca (Eds.), Proceedings IROS Workshop on pHRI—Physical Human-Robot Interaction in Anthropic Domains, Beijing, China.

    Google Scholar 

  2. Bicchi, A., & Tonietti, G. (2004). Fast and “soft-arm" tactics [robot arm design]. Robotics Automation Magazine, IEEE, 11, 22–33.

    Article  Google Scholar 

  3. Brooks, R.A., Breazeal, C., Marjanovic, M., Scassellati, B., & Williamson, M.M. (1999). The Cog project: Building a humanoid robot. In C. L. Nehaniv (Ed.), Computation for metaphors, analogy, and agents. Lecture notes in computer science (pp. 52–87). Berlin: Springer.

    Google Scholar 

  4. B.T. Inc. (2010). The WAM arm from Barret Technology. http://www.barrett.com/robot/products-arm.htm.

  5. Bruner, J. S. (1968). The Processes of cognitive growth: Infancy. Worcester, MA: Clark University Press.

    Google Scholar 

  6. Caccavale, F., Natale, C., Siciliano, B., & Villani, L. (2005). Integration for the next generation: Embedding force control into industrial robots. Robotics Automation Magazine, IEEE, 12, 53–64.

    Article  Google Scholar 

  7. Calinon, S., Sardellitti, I., & Caldwell, D. (2010). Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan.

    Google Scholar 

  8. Chiaverini, S., Siciliano, B., & Villani, L. (1999). A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Transactions on Mechatronics, 4, 273–285.

    Article  Google Scholar 

  9. Colgate, J.E. (1988). The control of dynamically interacting systems. Thesis (Ph. D.), Massachusetts Institute of Technology, Cambridge, MA, USA.

    Google Scholar 

  10. De Luca, A. (2006). Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1623–1630).

    Google Scholar 

  11. Desantis, A., Siciliano, B., Deluca, A., & Bicchi, A. (2008). An atlas of physical human–robot interaction. Mechanism and Machine Theory, 43, 253–270.

    Article  Google Scholar 

  12. Edsinger-Gonzales, A., & Weber, J. (2004). Domo: A force sensing humanoid robot for manipulation research. Humanoid Robots, 2004 4th IEEE/RAS International Conference on (Vol. 1, pp. 273–291).

    Google Scholar 

  13. Fumagalli, M., Randazzo, M., Nori, F., Natale, L., Metta, G., & Sandini, G. (2010). Exploiting proximal F/T measurements for the iCub active compliance. In IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan.

    Google Scholar 

  14. Haddadin, S., Albu-Schaffer, A., & Hirzinger, G. (2008). The role of the robot mass and velocity in physical human-robot interaction—Part I: Non-constrained blunt impacts. In IEEE International Conference on Robotics and Automation, Pasadena, CA, USA.

    Google Scholar 

  15. Haddadin, S., Albu-Schaffer, A., Frommberger, M., & Hirzinger, G. (2008). The role of the robot mass and velocity in physical human-robot interaction—Part II: Constrained blunt impacts. In IEEE International Conference on Robotics and Automation, Pasadena, CA, USA.

    Google Scholar 

  16. Haddadin, S., Albu-Schaffer, A., & Hirzinger, G. (2007). Safety evaluation of physical human-robot interaction via crash-testing. In Robotics: Science and System Conference (RSS 2007), Atlanta, Georgia.

    Google Scholar 

  17. Haddadin, S., Albu-Schaffer, A., Eiberger, O., & Hirzinger, G. (2010). New insights concerning intrinsic joint elasticity for safety. In IEEE/RSJ International Conference on Intelligent Robots and Systems.

    Google Scholar 

  18. Haddadin, S., Urbanek, H., Parusel, S., Burschka, D., Rossmann, J., Albu-Schaffer, A., et al. (2010). Real-time reactive motion generation based on variable attractor dynamics and shaped velocities. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on (pp. 3109–3116).

    Google Scholar 

  19. Hogan, N., & Buerger, S. (2004). Impedance and interaction control (Chap. 19, pp. 1–23). Boca Raton: CRC Press.

    Google Scholar 

  20. Ishida, T., & Takanishi, A. (2006). A robot actuator development with high backdrivability. In Robotics, Automation and Mechatronics, 2006 IEEE Conference on (pp. 1–6).

    Google Scholar 

  21. Iwata, H., & Sugano, S. (2009). Design of human symbiotic robot TWENDY-ONE. In 2009 IEEE International Conference on Robotics and Automation (pp. 580–586), IEEE.

    Google Scholar 

  22. Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In Robotics and Automation. Proceedings. 1985 IEEE International Conference on (Vol. 2, pp. 500–505).

    Google Scholar 

  23. Kulic, D., & Croft, E. (2005). Real-time safety for human–robot interaction. In Advanced Robotics, 2005. ICAR ’05. Proceedings., 12th International Conference on (pp. 719–724).

    Google Scholar 

  24. Kulic, D., & Croft, E. (2007). Pre-collision safety strategies for human-robot interaction. Autonomous Robots, 22, 149–164.

    Article  Google Scholar 

  25. Lussier, B., Chatila, R., Guiochet, J., Ingr, F., Lampe, R., olivier Killijian, M. et al. (2005). Fault tolerance in autonomous systems: How and how much. In Proceedings of the 4th IARP/IEEE-RAS/EURON Joint Workshop on Technical Challenge for Dependable Robots in Human Environments (pp. 16–18).

    Google Scholar 

  26. Maturana, H. (1970). Biology of cognition. Research Report BCL 9.0, University of Illinois, Urbana, IL.

    Google Scholar 

  27. Maturana, H. (1975). The organization of the living: A theory of the living organization. The International Journal of Man-Machine Studies, 7, pp. 313–332.

    Google Scholar 

  28. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. Dordrecht: D. Reidel Publishing Company.

    Book  Google Scholar 

  29. Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010). The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks, Special Issue on Social Cognition: From Babies to Robots, 23, 1125–1134.

    Google Scholar 

  30. Minguez, J., Lamiraux, F., & Laumond, J. P. (2008). Motion planning and obstacle avoidance. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 827–852). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  31. Mistry, M., Buchli, J., & Schaal, S. (2010). Inverse dynamics control of floating base systems using orthogonal decomposition. In IEEE International Conference on Robotics and Automation.

    Google Scholar 

  32. Pratt, G., & Williamson, M. (1995). Series elastic actuators. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 399–406), Los Alamitos, CA, USA.

    Google Scholar 

  33. Salisbury, K., Townsend, W., Ebrman, B., & DiPietro, D. (1988). Preliminary design of a whole-arm manipulation system (WAMS). In Robotics and Automation, 1988. Proceedings, 1988 IEEE International Conference on (Vol. 1, pp. 254–260).

    Google Scholar 

  34. Sandini, G., Metta, G., & Vernon, D. (2007). The iCub cognitive humanoid robot: An open-system research platform for enactive cognition. 50 Years of AI. LNAI, 4850, 359–370.

    Google Scholar 

  35. Schiavi, R., Grioli, G., Sen, S., & Bicchi, A.(2008). VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA.

    Google Scholar 

  36. Sciavicco, L., & Siciliano, B. (2005). Modelling and control of robot manipulators. Advanced textbooks in control and signal processing. Berlin: Springer.

    Google Scholar 

  37. Siciliano, B., & Villani, L. (1996). A passivity-based approach to force regulation and motion control of robot manipulators. Automatica, 32, 443–447.

    Article  MathSciNet  MATH  Google Scholar 

  38. Siciliano, B., & Villani, L. (2000). Robot force control. Norwell, MA: Kluwer Academic Publishers.

    Google Scholar 

  39. Sisbot, E., Marin, L., Alami, R., & Simeon, T. (2006). A mobile robot that performs human acceptable motions. In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on (pp. 1811–1816).

    Google Scholar 

  40. Sisbot, E., Marin-Urias, L., Broqure, X., Sidobre, D., & Alami, R. (2010). Synthesizing robot motions adapted to human presence. International Journal of Social Robotics, 2, 329–343.

    Article  Google Scholar 

  41. Tonietti, G., Schiavi, R., & Bicchi, A. (2005). Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005.

    Google Scholar 

  42. Townsend, W. T. (1988). The effect of transmission design on force-controlled manipulator performance. Cambridge, MA: Massachusetts Institute of Technology.

    Google Scholar 

  43. Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Santos-Victor, J., et al. (2007). iCub—the design and realization of an open humanoid platform for cognitive and neuroscience research. International Journal of Advanced Robotics, 21(10), 1151–1175.

    Article  Google Scholar 

  44. Varela, F. (1979). Principles of biological autonomy. New York: Elsevier North Holland.

    Google Scholar 

  45. Volpe, R., & Khosla, P. (1993, November). A theoretical and experimental investigation of explicit force control strategies for manipulators. IEEE Transactions on Automation Control, 30(11), 1634–1650.

    Article  MathSciNet  Google Scholar 

  46. Weng, Y. H., Chen, C. H., & Sun, C. T. (2009). Toward the human–robot co-existence society: On safety intelligence for next generation robots. International Journal of Social Robotics, 1, 267–282. doi:10.1007/s12369-009-0019-1.

    Article  Google Scholar 

  47. Zinn, M., Khatib, O., Roth, B., & Salisbury, J. (2004). Playing it safe—human-friendly robots. Robotics & Automation Magazine, IEEE, 11, 12–21.

    Article  Google Scholar 

  48. Zinn, M., Khatib, O., Roth, B., & Salisbury, J. (2002). A new actuation approach for human friendly robot design. In B. Siciliano & E. P. Dario (Eds.), Springer tracts in advanced robotics (Vol. VIII). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Fumagalli .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fumagalli, M. (2014). The Role of Force Perception and Backdrivability in Robot Interaction. In: Increasing Perceptual Skills of Robots Through Proximal Force/Torque Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01122-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01122-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01121-9

  • Online ISBN: 978-3-319-01122-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics