Skip to main content

Individual Liquids and Liquid Solutions Under Confinement

  • Chapter
Small-Angle Scattering from Confined and Interfacial Fluids
  • 996 Accesses

Abstract

This Chapter deals with applications of SAS to study the influence of confinement on phase transitions of confined liquids and liquid solutions. It describes results of neutron and x-ray scattering studies of various aspects of the confined liquid behavior including adsorption of electrolyte ions in porous carbons, detection of the oil generation in pores of hydrocarbon rocks, and formation of nanobubbles on nanostructured surfaces of variable hydrophobicity. Two competing theoretical approaches that predict how pore induced random disorder may affect fluid behavior are Random Field Ising Model and a single pore model. SAS studies of confined solutions near their critical demixing points have been used to verify theoretical predictions, and explore the specifics of phase transitions in confined liquid crystals and supercooled water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon, P., Gogotsi, Y.: Capacitive energy storage in nanostructured carbon – electrolyte systems. Acc. Chem. Res. 46, 1094 (2013)

    Article  Google Scholar 

  2. Gu, W., Yushin, G.: Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. WIREs Energ. Environ. 3, 424 (2014)

    Article  Google Scholar 

  3. Oren, Y.: Capacitive delonization (CDI) for desalination and water treatment – past, present and future (a review). Desalination 228, 10 (2008)

    Article  Google Scholar 

  4. Portet, C., Yushin, G., Gogotsi, Y.: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511 (2007)

    Article  Google Scholar 

  5. Raymundo-Pinero, E., Kierzek, K., Machnikowski, J., Beguin, F.: Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498 (2006)

    Article  Google Scholar 

  6. Boukhalfa, S., He, L., Melnichenko, Y.B., Yushin, G.: Small-angle neutron scattering for in situ probing of ion adsorption inside micropores. Angew. Chem. Int. Ed. 52, 4618 (2013)

    Article  Google Scholar 

  7. Boukhalfa, S., Gordon, D., He, L., Melnichenko, Y.B., Nitta, N., Magasinski, A., Yushin, G.: In situ small angle neutron scattering revealing ion adsorption in microporous carbon electrical double layer capacitors. ACS Nano 8, 2495 (2014)

    Article  Google Scholar 

  8. Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P.: Anomalous increase in carbon capacitance at pore size below 1 nm. Science 313, 1760 (2006)

    Article  Google Scholar 

  9. Kaneko, K., Ohiba, T., Ohkubo, T.: Nanospace molecular science and adsorption. Adsorption 11, 21 (2005)

    Article  Google Scholar 

  10. Haumann, M., Rusager, A.: Hydroformylation in room temperature ionic liquids (RTILs): catalyst and process developments. Chem. Rev. 108, 1474 (2008)

    Article  Google Scholar 

  11. Stefanopoulos, K.L., Romanos, G.E., Vangeli, O.C., Mergia, K., Kanellopoulos, N.K., Koutsioubis, A., Larez, D.: Investigation of confined ionic liquid in nanostructured materials by a combination of SANS, contrast-matching SANS, and nitrogen adsorption. Langmuir 27, 7980 (2011)

    Article  Google Scholar 

  12. Romanos, G.E., Stefanopoulos, K.L., Vangeli, O.C., Mergia, K., Beltsios, K.G., Kanellopoulos, N.K., Lairez, D.: Investigation of physically and chemically ionicf liquid confinement in nanoporous materials by a combination of SANS, contrast-matching SANS, XRD and nitrogen adsorption. J. Phys. Conf. Ser. 340, 012087 (2012)

    Article  Google Scholar 

  13. Romanos, G.E., Vangeli, O.C., Stefanopoulos, K.L., Kouvelos, E.P., Papageorgiou, S.K., Favvas, E.P., Kanellopoulos, N.K.: Methods of evaluating pore morphology in hybrid organic-inorganic porous materials. Micropor. Mesopor. Mater. 120, 53 (2009)

    Article  Google Scholar 

  14. Impéror-Clerc, M., Davidson, P., Davidson, A.: Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J. Am. Chem. Soc. 122, 11925 (2000)

    Article  Google Scholar 

  15. Shin, T., Findenegg, G.H., Brandt, A.: Surfactant adsorption in ordered mesoporous silica studied by SANS. Prog. Colloid. Polym. Sci. 133, 116 (2006)

    Article  Google Scholar 

  16. Perdikaki, A.V., Vangeli, O.C., Karanikolos, G.N., Stefanopoulos, K.L., Beltsios, K.G., Alexandridis, P., Kanellopoulos, N.K., Romanos, G.E.: Ionic liquid-modified porous materials for gas separation and heterogeneous catalysis. J. Phys. Chem. C 116, 16398 (2012)

    Article  Google Scholar 

  17. Radlinski, A.P.: Small-angle neutron scattering and the microstructure of rocks. Rev. Miner. Geochem. 63, 363 (2006)

    Article  Google Scholar 

  18. Radlinski, A.P., Boreham, C.J., Wignall, G.D., Lin, J.S.: Microstructural evolution of source rocks during hydrocarbon generation: a small-angle scattering study. Phys. Rev. B 53, 14152 (1996)

    Article  Google Scholar 

  19. Radlinski, A.P., Boreham, C.J., Lindner, P., Randl, O., Wignall, G.D., Hinde, A., Hope, J.M.: Small angle neutrom scattering signature of oil generation in artificially and naturally matured hydrocarbon source rocks. Org. Geochem. 31(1) (2000)

    Google Scholar 

  20. Radlinski, A.P., Kennard, J.M., Edwards, D.S., Hinde, A.L., Davenport, R.: Hydrocarbon generation and expulsion from early cretaceous source rocks in the Browse Basin, North West Shelf, Australia: a SANS study. Aust. Pet. Prod. Explor. Assoc. J. 151, 2014 (2014)

    Google Scholar 

  21. Blossey, R.: Self-cleaning surfaces – virtual realities. Nat. Mater. 2, 301 (2003)

    Article  Google Scholar 

  22. Tuteja, A., Choi, W., Ma, M., Mabry, J.M., Mazzella, S.A., Rutledge, G.C., McKinley, G.H., Cohen, R.E.: Designing superoleophobic surfaces. Science 318, 1618 (2007)

    Article  Google Scholar 

  23. Cao, L., Jones, A.K., Sikka, V.K., Wu, J., Gao, D.: Anti-icing superhydrophobic coatings. Langmuir 25, 12444 (2009)

    Article  Google Scholar 

  24. Theofanous, T.G., Tu, J.P., Dinh, A.T., Dinh, T.N.: The boiling crisis phenomenon – part I: nucleation and nucleate boiling heat transfer. Exp. Therm. Fluid. Sci. 26, 775 (2002)

    Article  Google Scholar 

  25. Bocquet, L., Lauga, E.: A smooth future? Nat. Mater. 10, 334 (2011)

    Article  Google Scholar 

  26. White, E.R., Mecklenburg, M., Singer, S.B., Aloni, S., Regan, B.C.: Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express 4, 055201 (2011)

    Article  Google Scholar 

  27. Seddon, J.R.T., Stefan Kooij, E., Poelsema, B., Zandvlet, H.J.W., Lohse, D.: Surface bubble nucleation stability. Phys. Rev. Lett. 106, 056101 (2011)

    Article  Google Scholar 

  28. Zhang, H., Lamb, R.N., Cookson, D.J.: Nanowetting of rough superhydrophobic surfaces. Appl. Phys. Lett. 92, 254106 (2007)

    Article  Google Scholar 

  29. Checco, A., Hofmann, T., DiMasi, E., Black, C.T., Ocko, B.M.: Morphoogy of air nanobubbles trapped at hydrophobic nanopatterned surfaces. Nano Lett. 10, 1354 (2010)

    Article  Google Scholar 

  30. Melnichenko, Y.B., Lavrik, N.V., Popov, E., Bahadur, J., He, L., Kravchenko, I.I., Smith, G., Pipich, V., Szekely, N.K.: Cavitation on deterministically nanostructured surfaces in contact with an aqueous phase: a small-angle neutron scattering study. Langmuir 30, 9985 (2014)

    Article  Google Scholar 

  31. Engel, M., Stuhn, B., Schneider, J.J., Cornelius, T., Naumann, M.: Small-angle X-ray scattering (SAXS) off parallel, cylindrical, well-defined nanopores: from random pore distribution to highly ordered samples. Appl. Phys. 97, 99 (2009)

    Article  Google Scholar 

  32. Zickler, G.A., Jahnert, S., Wagermaier, W., Funari, S.S., Findenegg, G.H., Paris, O.: Physisorbed films in periodic mesoporous silica studied by in situ synchrotron small-angle diffraction. Phys. Rev. B 73, 184109 (2006)

    Article  Google Scholar 

  33. Reyssat, M., Pepin, A., Marty, F., Chen, Y., Quéré, D.: Bouncing transitions on microtextured materials. Europhys. Lett. 74, 306 (2006)

    Article  Google Scholar 

  34. Deng, T., Varanasi, K.K., Hsu, M., Bhate, N., Keimel, C., Stein, J., Blohm, M.: Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 94, 133109 (2009)

    Article  Google Scholar 

  35. Checco, A., Ocko, B.M., Rahman, A., Black, C.T., Tasinkevych, M., Giacomello, A., Dietrich, S.: Collapse and reversibility of the superhydrophobic state on nanostructured surfaces. Phys. Rev. Lett. 112, 216101 (2014)

    Article  Google Scholar 

  36. Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62, 1573 (1999)

    Article  Google Scholar 

  37. de Gennes, P.G.: Liquid-liquid demixing inside a rigid network – qualitative features. J. Phys. Chem. 88, 6469 (1984)

    Article  Google Scholar 

  38. Andelman, D., Joanny, J.F.: Scaling phenomena in disordered systems. In: Pynn, R., Skjeltorp, A. (eds.) Metastability and Landau Theory for Random Fields and Demixing in Porous Media, p. 1991. Plenum, New York, NY (1991)

    Google Scholar 

  39. Liu, A.J., Durian, D.J., Herbolzheimer, E., Safran, S.A.: Wetting transition in a cylindrical pore. Phys. Rev. Lett. 65, 1897 (1990)

    Article  Google Scholar 

  40. Dierker, S.B., Wiltzius, P.: Statics and dynamics of a critical binary fluid in a porous medium. Phys. Rev. Lett. 66, 1185 (1991)

    Article  Google Scholar 

  41. Lin, M.Y., Sinha, S.K., Drake, J.M., Wu, X.I., Thiyagarajan, P., Stanley, H.B.: Study of separation of a binary fluid mixture in confined geometry. Phys. Rev. Lett. 72(2207) (1994)

    Google Scholar 

  42. Frisken, B.J., Cannell, D.S., Lin, M.Y., Sinha, S.K.: Neutron scattering studies of binary mixtures in silica gels. Phys. Rev. E 51, 5866 (1995)

    Article  Google Scholar 

  43. Formisano, F., Teixeira, J.: Appearance of critical fluctuations in a binary fluid mixture confined in Vycor glass. J. Phys. Condens. Matter 12, A351 (2000)

    Article  Google Scholar 

  44. Formisano, F., Teixeira, J.: Critical fluctuations of a binary fluid mixture confined in a porous medium. Eur. Phys. J. E. 1, 1 (2000)

    Article  Google Scholar 

  45. Schemmel, S., Rother, G., Eckerlebe, H., Findenegg, G.: Local structure of a phase-separating binary mixture in a mesoporous glass matrix studied by small-angle neutron scattering. J. Chem. Phys. 122, 244718 (2005)

    Article  Google Scholar 

  46. Gommes, C.J.: Three-dimensional reconstruction of liquid phases in disordered mesopores using in situ small-angle scattering. J. Appl. Crystallogr. 46, 493 (2013)

    Article  Google Scholar 

  47. Pekala, R.W., Schaefer, D.W.: Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26, 5487 (1993)

    Article  Google Scholar 

  48. Gommes, C.J., Roberts, A.P.: Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. Phys. Rev. E 77, 041409 (2008)

    Article  Google Scholar 

  49. Armstrong, M., Galli, A.G., Beucher, H., Le Loc'h, G., Renard, D., Doligez, B., Eschard, R., Geffroy, F.: Plurigaussian Simulations in Geosciences. Springer, Berlin (2003)

    Book  Google Scholar 

  50. Cole, D.R., Herwig, K.W., Mamontov, E., Larese, J.Z.: Neutron scattering and diffraction studies of fluids and fluid-solid interactions. Rev. Miner. Geochem. 63, 313 (2006)

    Article  Google Scholar 

  51. Brovchenko, I., Oleinikova, A.: Interfacial and Confined Water. Elsevier, Amsterdam, Boston, Heidelberg (2008)

    Google Scholar 

  52. Fayer, M.D., Levinger, N.: Analysis of water in confined geometries and at interfaces. Annu. Rev. Anal. Chem. 3, 89 (2010)

    Article  Google Scholar 

  53. http://www1.lsbu.ac.uk/water/water_anomalies.html

  54. Brovchenko, I., Geiger, A., Oleinikova, A.: A multiple liquid-liquid transitions in supercooled water. J. Chem. Phys. 118, 9473 (2003)

    Article  Google Scholar 

  55. Paschek, D.: How the liquid-liquid transition affects hydrophobic hydration in deeply supercooled water. Phys. Rev. Lett. 94, 217802 (2005)

    Article  Google Scholar 

  56. Brovchenko, I., Geiger, A., Oleinikova, A.: A liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models. J. Chem. Phys. 123, 044515 (2005)

    Article  Google Scholar 

  57. Liu, D., Zhang, Y., Chen, C.C., Mou, C.Y., Poole, P.H., Chen, S.H.: Observation of the density minimum in deeply supercooled confined water. Proc. Natl. Acad. Sci. U. S. A. 104, 9570 (2007)

    Article  Google Scholar 

  58. Liu, D., Zhang, Y., Liu, Y., Wu, J., Chen, C.C., Mou, C.Y., Chen, S.H.: Density measurement of 1-D confined water by smal-angle neutron scattering method: pore size and hydration level dependencies. J. Phys. Chem. B 112, 4309 (2008)

    Article  Google Scholar 

  59. Zhang, Y., Faraone, A., Kamitahara, W.A., Liu, K.H., Mou, C.Y., Leao, J.B., Chang, C., Chen, S.H.: Density hysteresis of heavy water confined in a nanoporous silica matrix. Proc. Natl. Acad. Sci. U. S. A. 108, 12206 (2011)

    Article  Google Scholar 

  60. Erko, M., Wallacher, D., Hoell, A., Haus, T., Zizak, I., Paris, O.: Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. Phys. Chem. Chem. Phys. 14, 3852 (2012)

    Article  Google Scholar 

  61. Mancinelli, R., Bruni, F., Ricci, M.A.: Controversial evidence on the point of minimum density in deeply supercooled confined water. J. Phys. Chem. Lett. 1, 1277 (2010)

    Article  Google Scholar 

  62. Zanotti, J.M., Morineau, D.: Dynamics of soft matter: neutron applications. In: Sakai, V.G., Alba-Simionesco, C., Chen, S.H. (eds.) Surface and Confinement Effects in Nano/Mesoporous Materials. Springer, New York, NY (2012)

    Chapter  Google Scholar 

  63. Crawford, G.P., Zumer, S.: Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks. CRC Press, Boca Raton, FL (1996)

    Google Scholar 

  64. Pesce de Silveira, N., Ehrburger-Dolle, F., Rochas, C., Rigacci, A., Pereira, F.V., Westfahl Jr., H.: Smectic ordering in polymer liquid crystal – silica aerogel nanocomposites. J. Therm. Anal. Calorim. 79, 579 (2005)

    Article  Google Scholar 

  65. Zhang, R., Zeng, X., Prehm, M., Liu, F., Grimm, S., Geuss, M., Steinhart, M., Tschierske, C., Ungar, G.: Honeycombs in honeycombs: complex liquid crystal alumina composite mesostructures. ACS Nano 8, 4500 (2014)

    Article  Google Scholar 

  66. Zidansek, A., Lahajnar, G., Kralj, S.: Phase transitions in 8CB liquid crystal confined to a controlled-pore glass: deuteron NMR and small angle X-ray scattering studies. Appl. Magn. Reson. 27, 311 (2004)

    Article  Google Scholar 

  67. Guegan, R., Morineau, D., Lefort, R., Beziel, W., Guendouz, M., Noirez, L., Henschel, A., Huber, P.: Rich polymorphism of a rod-like crystal (8CB) confined in two types of unidirectional nanopores. Eur. Phys. J. E. 26, 261 (2008)

    Article  Google Scholar 

  68. Guegan, R., Morineau, D., Loverdo, C., Beziel, W.: Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon. Phys. Rev. E 73, 011707 (2006)

    Article  Google Scholar 

  69. Bellini, T., Radzihovsky, L., Toner, J., Clark, N.A.: Universality and scaling in the disordering of a smectic liquid crystal. Science 294, 1074 (2001)

    Article  Google Scholar 

  70. Clegg, P.S., Stock, C., Birgeneau, R.J., Garland, C.W., Roshi, A., Iannacchione, G.S.: Effect of a quenched random field on a continuous symmetry breaking transition: nematic to smectic-A transition in octyloxycyanobiphenyl-aerosil dispersions. Phys. Rev. E 67, 02173 (2003)

    Article  Google Scholar 

  71. Ocko, B.M., Birgeneau, R.J., Litster, J.D.: Crossover to tricritical behavior at the nematic to smectic-A transition: an X-ray scattering study. Z. Phys. B. Condens. Matter. 62, 487 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Melnichenko, Y.B. (2016). Individual Liquids and Liquid Solutions Under Confinement. In: Small-Angle Scattering from Confined and Interfacial Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-01104-2_9

Download citation

Publish with us

Policies and ethics