Skip to main content

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2875 Accesses

Abstract

Going beyond the Hartree and Hartree–Fock approximations, this chapter deals with fluctuations of an electron gas away from the mean-field approximation. Having introduced the basic distinction between collective effects at long wavelength (plasmons) and single-particle interactions at short range, we derive the short-range interparticle scattering rate and discuss its implementation in the study of electron transport. We also discuss the interband process of impact ionization. We conclude with a brief discussion of band-gap narrowing, a related Coulomb effect at high density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bohm, D. Pines, A collective description of electron interactions. I. Magnetic interactions. Phys. Rev. 82, 625 (1951)

    MathSciNet  MATH  Google Scholar 

  2. D. Bohm, D. Pines, A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85, 338 (1952)

    MathSciNet  MATH  Google Scholar 

  3. D. Bohm, D. Pines, A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609 (1953)

    MathSciNet  MATH  Google Scholar 

  4. D. Pines, A collective description of electron interactions: IV. Electron interaction in metals. Phys. Rev. 92, 626 (1953)

    MATH  Google Scholar 

  5. P. Lugli, D.K. Ferry, Effect of electron-electron and electron-plasmon interactions on hot carrier transport in semiconductors. Physica B+C 129, 532 (1985)

    Google Scholar 

  6. P. Lugli, Electron-electron and electron-plasmon interaction in polar semiconductors. Physica B+C 134, 364 (1985)

    Google Scholar 

  7. M.V. Fischetti, S.E. Laux, Long-range Coulomb interactions in small silicon devices. Part I: performance and reliability. J. Appl. Phys. 89, 1205 (2001)

    Google Scholar 

  8. M.V. Fischetti, Long-range Coulomb interactions in small Si devices. Part II: effective electron mobility in thin-oxide structures. J. Appl. Phys. 89, 1232 (2001)

    Google Scholar 

  9. S.M. Goodnick, P. Lugli, Effect of electron-electron scattering on nonequilibrium transport in quantum-well systems. Phys. Rev. B 37, 2578 (1988)

    Article  ADS  Google Scholar 

  10. M.V. Fischetti, S. E. Laux, E. Crabbé, Monte Carlo simulation of hot-electron transport in silicon devices: is there a short-cut? J. Appl. Phys. 78, 1058 (1995)

    Article  ADS  Google Scholar 

  11. F.D.M. Haldane, Luttinger liquid theory’ of one-dimensional quantum fluids. J. Phys. C Solid State Phys. 14, 2585 (1981)

    Article  ADS  Google Scholar 

  12. G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  13. B.K. Ridley, Quantum Processes in Semiconductors (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  14. L. Meitner, Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen, Z. Phys. 9, 131 (1922)

    Article  ADS  Google Scholar 

  15. P. Auger, Sur les rayons β secondaires produits dans un gaz par des rayons X. C. R. Hebd. Seances Acad. Sci. 177, 169 (1923)

    Google Scholar 

  16. N. Sano, T. Aoki, M. Tomizawa, A. Yoshii, Electron transport and impact ionization in Si. Phys. Rev. B 41, 12122 (1990)

    Article  ADS  Google Scholar 

  17. M.V. Fischetti, N. Sano, S.E. Laux, K. Natori, Full-band-structure theory of high-field transport and impact ionization of electrons and holes in Ge, Si, and GaAs. J. Technol. Comput. Aided Des. 1, 1–50 (1997)

    Google Scholar 

  18. H. Nara, A. Morita, Shallow donor potential in silicon. J. Phys. Soc. Jpn. 21, 1852 (1966)

    Article  ADS  Google Scholar 

  19. M.L. Cohen, T.K. Bergstresser, Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys. Rev. 141, 789 (1966)

    Article  ADS  Google Scholar 

  20. J.R. Chelikowsky, M.L. Cohen, Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. 14, 556–582 (1976)

    Article  ADS  Google Scholar 

  21. E.O. Kane, Electron scattering by pair production in silicon. Phys. Rev. 159, 624 (1967)

    Article  ADS  Google Scholar 

  22. L.V. Keldysh, Concerning the theory of impact ionization in semiconductors. Sov. Phys. JETP 21, 1135 (1965) [J. Exptl. Theoret. Phys. (U.S.S.R.) 48, 1692 (June, 1965)].

    Google Scholar 

  23. B.K. Ridley, Lucky-drift mechanism for impact ionisation in semiconductors. J. Phys. C Solid State Phys. 16, 3373 (1983)

    Article  ADS  Google Scholar 

  24. G.D. Mahan, Many Particle Physics (Plenum, New York, 1991)

    Google Scholar 

  25. C. Kittel, Quantum Theory of Solids, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  26. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover, Mineola, New York, 2003)

    MATH  Google Scholar 

  27. G.D. Mahan, Energy gap in Si and Ge: impurity dependence. J. Appl. Phys. 51, 2634 (1980)

    Article  ADS  Google Scholar 

  28. H.P.D.Lanyon, R.A. Tuft, Bandgap narrowing in moderately to heavily doped silicon. IEEE Trans. Electron Dev. ED-26, 1014 (1979)

    Google Scholar 

  29. R. Kubo, H. Ichimura, T. Usui, N. Hashitsume, Statistical Mechanics (North-Holland, Amsterdam, 1965)

    Google Scholar 

  30. M. Gell-Mann, K. Brueckner, Correlation energy of an electron gas at high density. Phys. Rev. 106, 364 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. P. Nozières, D. Pines, Correlation energy of a free electron gas. Phys. Rev. 111, 442 (1958)

    Article  ADS  MATH  Google Scholar 

  32. T. Uechi, T. Fukui, N. Sano, 3D Monte Carlo simulation including full Coulomb interaction under high electron concentration regimes. Phys. Status Solidi C 5, 102 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fischetti, M.V., Vandenberghe, W.G. (2016). Coulomb Interactions Among Free Carriers. In: Advanced Physics of Electron Transport in Semiconductors and Nanostructures. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-01101-1_15

Download citation

Publish with us

Policies and ethics