Advertisement

Austrian Activities in Protecting Critical Water Infrastructure

  • M. Möderl
  • W. Rauch
  • S. Achleitner
  • A. Lukas
  • E. Mayr
  • R. Neunteufel
  • R. Perfler
  • C. Neuhold
  • R.  Godina
  • H.  Wiesenegger
  • F.  Friedl
  • D. Fuchs-Hanusch
  • J. Lammel
  • P. Hohenblum
  • F. Skopik
  • T. Bleier
  • K. Weber
  • F. Eder
  • M. Brugger
Chapter
Part of the Protecting Critical Infrastructure book series (PCIN, volume 2)

Abstract

The first section of the chapter gives an overview of the legal rules and standards governing the Austrian water supply sector, but it includes also interdependencies to other sectors. Further, best practices in management and planning established by Austrian utilities and results from an Austrian benchmarking survey for water suppliers are discussed.

Keywords

Geographic Information System Water Supply System Critical Infrastructure Water Infrastructure Urban Water Supply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Technical Terms and Abbreviations

AC

Asbestos cement

ACHILLES

Spatial vulnerability identification tool

AIT

Austrian Institute of Technology

alpS

Centre for Climate Change Adaptation Technologies

APCIP

Austrian program for critical infrastructure protection

AQUASEC-AUT

Austrian Crisis Management Laboratory

BMLFUW

Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management

BMVIT

Austrian Federal Ministry for Transport, Innovation and Technology

CAIS

Cyber attack information system

CERT.AT

Computer emergency response team Austria

DI

Ductile iron

EPCIP

European programme for critical infrastructure protection

EU

European union

FEIS

Failure experience improvement system

FP7

Seventh framework programme of the European community

GEDES

Risk of flood and landfill hazard tool

GIS

Geographic information system

ICS

Industrial control systems

ICT

Information and communication technology

INFOSAN

Strategic data acquisition for sewer rehabilitation planning in Austria

INSPIRE

Infrastructure for spatial information in the European community

IRA-WDS

GIS-based risk analysis tool for water distribution systems

IT

Information technology

I-VAM

Infrastructure vulnerability assessment model

KIRAS

Austrian security research programme

LDTWM

Large-diameter transmission water mains

OIIP

Austrian institute for international affairs

ORTIS

Operational risk management tool and information system

P

Phases

PE

Polyethylene

PiReM

Pipe rehabilitation management

RAMCAP

Risk analysis and management for critical asset protection

RAM-W

Risk assessment methodology for water

SAGA-GIS

System for automated geoscientific analyses—Geographic information system

SNA

Social network analysis

VSAT

Vulnerability self-assessment tool

WS

Work streams

WS1-P1

Identification of priority sectors for action

WS2-P2

Identification of vulnerabilities, threats and risks

WS2-P3

Implementation of minimum protection measures

WS3-P3

Development of specific protection measures for each national critical infrastructure

WSP

Water safety plan

ZuHaZu

Condition assessment of LDTWM

Notes

Acknowledgments

ACHILLES (nr. 824682), AQUASEC-AUT (nr. 824718), CAIS (nr. 832345), FEIS (nr. 813772), link-up (nr. 827659) are GEDES (nr. 813811) are outcomes of research projects funded by KIRAS (Federal Ministry for Transport, Innovation and Technology), a national program for security research. PiReM was developed within the Kompetenznetzwerk research project funded by the Austrian Ministry of Economy and Work.

References

  1. Belevi H, Baccini P (1989) Long-term behavior of municipal solid waste landfills. Waste Manag Res 1(7):43–56Google Scholar
  2. BMLFUW (1976). BGBl 436/1976—Verordnung des Bundesministers für Land-und Forstwirtschaft vom 30. Juli 1976 über die Gefahrenzonenpläne. Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna, Austria (in German)Google Scholar
  3. BMLFUW (2007) Wasser in Österreich—Zahlen und Fakten. Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna, Austria (in German)Google Scholar
  4. Brandt PT, Sandler T (2010) What do transnational terrorists target? Has it changed? Are we safer? J Conflict Resolut 54(2):214–236CrossRefGoogle Scholar
  5. Bundeskanzleramt (2008) Das österreichische Programm zum Schutz kritischer Infrastrukturen, Masterplan APCIP. Vienna, Austria (in German)Google Scholar
  6. Byres E, Lowe J (2004) The myths and facts behind cyber security risks for industrial control systems. VDE Congress, Berlin, pp 213–218Google Scholar
  7. Commission of the European Union (2006) European programme for critical infrastructure protection. Brussels, BelgiumGoogle Scholar
  8. Commission of the European Union (2004) Communication from the commission to the council and the European parliament: critical infrastructure protection in the fight against terrorism. Brussels, BelgiumGoogle Scholar
  9. Council of the European Union (2005) The European union counter-terrorism strategy. Brussels, BelgiumGoogle Scholar
  10. Council of the European Union (2008) Council directive 2008/114/EC of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Brussels, BelgiumGoogle Scholar
  11. Enders W, Sandler T (2004) What do we know about the substitution effect in transnational terrorism? research on terrorism: trends achievements and failures. Frank Cass, LondonGoogle Scholar
  12. Friedl F, Möderl M, Rauch W, Liu Q, Schrotter S, Fuchs-Hanusch, D (2012) Failure propagation for “Large-Diameter Transmission Water Mains” using dynamic failure risk index. World environmental and water resources congress. American Society of Civil Engineers (ASCE), AlbuquerqueGoogle Scholar
  13. Frisch H (2009) Strategic change in terrorist movements: lessons from Hamas. Stud Conflict Terrorism 32(12):1049–1065CrossRefGoogle Scholar
  14. Fuchs-Hanusch D, Gangl G, Kornberger B, Kölbl J, Hofrichter J, Kainz H (2008) PiReM—Pipe rehabilitation management, developing a decision support system for rehabilitation planning of water mains. Water Pract Technol 3(1)Google Scholar
  15. Fuchs-Hanusch D, Kasess D (2012) Maintenance management—risk- and condition-oriented planning for Vienna’s water pipe network. Water Loss 2012, Manila, PhilipinesGoogle Scholar
  16. Fuchs-Hanusch D, Kornberger B, Friedl F, Scheucher R (2011) Whole of life cost calculations for water supply pipes. IWA LESAM 2011, Mülheim, GermanyGoogle Scholar
  17. Geller W, Ockenfeld K, Böhme M, Knöchel A (2004) Schadstoffbelastung nach dem Elbe-Hochwasser 2002. Final report of the ad-hoc-project ‘Schadstoffuntersuchungen nach dem Hochwasser vom August 2002—Ermittlung der Gefährdungspotentiale an Elbe und Mulde. “UFZ—Umweltforschungszentrum, Leipzig-Halle GmbH, Magdeburg, GermanyGoogle Scholar
  18. Gleick PH (2006) Water and terrorism. Water Policy 8(6):481–503CrossRefGoogle Scholar
  19. Habersack H, Moser A (2003) Water and terrorism. Water POLICY Ereignisdokumentation—Hochwasser August 2002. Water and terrorism. Water Policy University of natural resources and applied life sciences, Vienna, Austria (in Germany)Google Scholar
  20. Hernandez-Sancho F, Renard N, Theuretzbacher-Fritz H (2007) Water pricing: from theory to practice. In: Water utility management international, p 10Google Scholar
  21. Höller P (2007) Avalanche hazards and mitigation in Austria: a review. Nat Hazards 43(1):81–101Google Scholar
  22. Igure VM, Laughter SA, Williams RD (2006) Security issues in SCADA networks. Comput Secur 25(7):498–506CrossRefGoogle Scholar
  23. Klink RE, Ham RK (1982) Effects of moisture movement on methane production in solid waste landfill samples. Resour Conserv 8:29–41CrossRefGoogle Scholar
  24. Laner D, Fellner J, Brunner PH (2009) Flooding of municipal solid waste landfills—a long-term environmental hazard?. Sci Total Environ 407(12):3674–3680CrossRefGoogle Scholar
  25. Laner D, Fellner J, Brunner PH, Neuhold C, Kolesar C (2008) Environmental relevance of flooded MSW landfills in Austria. In: ISWA/WMRAS, ISWA/WMRAS world congress 2008—East meets Waste, Singapore, Nov 3–6Google Scholar
  26. Lewis JA (2002) Assessing the risks of cyberterrorism, cyber war and other cyber threats. Center for Strategic and International Studies, WashingtonGoogle Scholar
  27. Lukas A, Mayr E, Richard L, Perfler R (2011) Supporting the water safety plan (WSP) approach with the failure experience improvement system (FEIS). Water Sci Technol: Water Supply 11(3):288–296CrossRefGoogle Scholar
  28. Lukas A, Mayr E, Ruhri M, Katzmair H, Perfler R (in press) Failure experience improvement system (FEIS) for water supply systems. J HydroinforGoogle Scholar
  29. Mayr E, Lukas A, Aichlseder A, Perfler R (2012) Experiences and lessons learned from practical implementation of a software-supported water safety plan approach. Water Sci Technol: Water Supply 12(1):101–108Google Scholar
  30. Mayr E, Lukas A, Möderl M, Rauch W, Perfler R (2011) Integrales Risikomanagement für die Trinkwasserversorgung in Österreich. Österreichische Wasser- und Abfallwirtschaft 63(3–4):82–86CrossRefGoogle Scholar
  31. Meinhardt PL (2005) Water and bioterrorism: preparing for the potential threat to U.S. water supplies and public health. Annu Rev Public Health 26:213–237CrossRefGoogle Scholar
  32. Möderl M, Rauch W (2011a) Spatial distributed risk assessment for urban water infrastructure. Handbook of Water and Wastewater Systems Protection. Springer, New York, ISBN 978-1-4614-0189-6Google Scholar
  33. Möderl M, Rauch W (2011b) Spatial risk assessment for critical network infrastructure using sensitivity analysis. Frontiers of Earth Science 5(4):414–420Google Scholar
  34. Nachtnebel HP, Holzmann H, Neuhold C, Haberl U, Kahl B, Bichler A (2009) GEDES: Gefährdung durch Deponien und Altablagerungen im Hochwasserfall Risikoanalyse und Minimierung—Teilbericht 2. University of Natural Resources and Life Sciences, Vienna, AustriaGoogle Scholar
  35. Neuhold C, Nachtnebel HP (2011) Assessing flood risk associated with waste disposals: methodology, application and uncertainties. Nat Hazards 56(1):359–370CrossRefGoogle Scholar
  36. Neunteufel R, Perfler R, Mayr E, Theurezbacher-Fritz H, Kölbl J (2010) Benefits from benchmarking—An Austrian case study. Water Pract Technol 5(2):Google Scholar
  37. Neunteufel R (2011) Benchmarking: a performance comparison tool. Aqua Press Int 4:34–35Google Scholar
  38. Neunteufel R, Theuretzbacher-Fritz H, Teix P, Kölbl J, Perfler R (2004) Benchmarking und Best Practices in der österreichischen Wasserversorgung—Stufe A.—Final report of ÖVGW pilot project 2003/04. Austrian Association for Gas and Water, Vienna, Austria (in German)Google Scholar
  39. ÖVGW (2009). “Die Österreichische Trinkwasserwirtschaft – Branchendaten und Fakten. Österreichische Vereinigung für das Gas- und Wasserfach. Austrian Association for Gas and Water, Vienna, Austria (in German)Google Scholar
  40. ÖVGW (2008) W 88—Anleitung zur Einführung eines einfachen Wassersicherheitsplanes. Austrian Association for Gas and Water, Vienna, Austria (in German)Google Scholar
  41. ÖVGW (2007) W 100—Wasserverteilleitungen—Betrieb und Instandhaltung.Austrian Association for Gas and Water, Vienna, Austria (in German)Google Scholar
  42. PiReM Systems—Water Supply (2010) Release 3.2. Decision support system for pipe rehabilitation management developed by KNet Waterpool. Graz, Austria, www.pirem.at
  43. Rank G, Kardel K, Pälchen W, Greif A (2003) Schadstoffbelastungen im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002. Statusseminar des BMBFAd-hoc-Verbundprojektes Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet.Freiberg, GermanyGoogle Scholar
  44. Rauch W, De Toffol S (2006) Climate change induced trends in high resolution rainfall. In: 7th International workshop on precipitation in Urban areas, St. Moritz, SwitzerlandGoogle Scholar
  45. Reid RL (2009) Guiding critical infrastructure. Civil Eng 79(2):50–55Google Scholar
  46. Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian dolomites since the Late glacial. CATENA 55(2):141–161CrossRefGoogle Scholar
  47. Stoffel M, Beniston M (2006) On the incidence of debris flows from the early little ice age to a future greenhouse climate: a case study from the Swiss Alps. Geophys Res Lett 33:187–202Google Scholar
  48. Theuretzbacher-Fritz H, Neunteufel R, Kölbl J, Perfler R, Unterwainig M, Krendelsberger R (2006) Benchmarking und Best Practices in der österreichischen Wasserversorgung—Stufe B. Final Report of ÖVGW project 2005/06. Austrian Association for Gas and Water, Graz-Vienna-Wiener Neustadt, Austria (in German)Google Scholar
  49. Wang Y, Au S-K (2009) Spatial distribution of water supply reliability and critical links of water supply to crucial water consumers under an earthquake. Reliab Eng Syst Saf 2:534–541CrossRefGoogle Scholar
  50. Young S, Balluz L, Malilay J (2004) Natural and technologic hazardous material releases during and after natural disasters: a review. Sci Total Environ 322(1–3):3–20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Möderl
    • 1
  • W. Rauch
    • 1
  • S. Achleitner
    • 1
  • A. Lukas
    • 2
  • E. Mayr
    • 2
  • R. Neunteufel
    • 2
  • R. Perfler
    • 2
  • C. Neuhold
    • 3
    • 4
  • R.  Godina
    • 4
  • H.  Wiesenegger
    • 6
  • F.  Friedl
    • 5
    • 6
  • D. Fuchs-Hanusch
    • 5
    • 6
  • J. Lammel
    • 7
  • P. Hohenblum
    • 8
  • F. Skopik
    • 9
  • T. Bleier
    • 9
  • K. Weber
    • 10
  • F. Eder
    • 11
  • M. Brugger
    • 12
  1. 1.Institute of InfrastructureUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute of Sanitary Engineering and Water Pollution ControlUniversity of Natural Resources and Life SciencesViennaAustria
  3. 3.Institute of Water Management, Hydrology and Hydraulic EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
  4. 4.Austrian Federal Ministry for Agriculture, Forestry, Environment and Water ManagementFederal Water Engineering AdministrationViennaAustria
  5. 5.Institute of Urban Water Management and Landscape Water EngineeringGraz University of TechnologyGrazAustria
  6. 6.Hydrographical Service SalzburgSalzburgAustria
  7. 7.AlpS GmbHInnsbruckAustria
  8. 8.Environmental Agency Austria, Substances and AnalysisViennaAustria
  9. 9.Safety and Security DepartmentAIT Austrian Institute of TechnologySeibersdorfAustria
  10. 10.Department of Public Law, State and Administrative TheoryUniversity of InnsbruckInnsbruckAustria
  11. 11.Department of Political ScienceUniversity of InnsbruckInnsbruckAustira
  12. 12.Section III - Telecommunication and Innovation, Staff Group for Technology Transfer and Security ResearchFederal Ministry for Transport, Innovation and TechnologyViennaAustria

Personalised recommendations