Advertisement

Assessment of Bioremediation Strategies for Explosives-Contaminated Sites

  • O. MuterEmail author
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Large amounts of soil and water have been contaminated with energetic compounds as a result of the manufacture, storage, testing, use and disposal of munitions as well as the use of nitroaromatic and nitramines as chemical feedstock for synthesis of pesticides, herbicides, dyes, and pharmaceuticals. Historically, TNT (2 methyl-1,3,5, trinitrobenzene) has been the most widely used military explosive (Nicklin et al. 1999; Kulkarni and Chaudhari 2007b). Since TNT is toxic, mutagenic, and also highly energetic (Rosenblatt et al. 1991), TNT contamination has a serious impact on the environment and also threatens human health (Maeda et al. 2007).

Keywords

Sole Nitrogen Source Energetic Compound Construct Wetland Treatment System Windrow Compost Cunninghamella Echinulata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was supported by the Ministry of Defence, the Republic of Latvia (Project AĪVA 2008/220), Latvian Council of Sciences (Project 09.1177), as well as the State Research program Nr. 2010.10-4/VPP-5 NatRes. Author is grateful to Konnie Andrews for her suggested manuscript revisions.

References

  1. Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488CrossRefGoogle Scholar
  2. Abioye PO, Aziz AA, Agamuthu P (2010) Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water Air Soil Pollut 209:173–179CrossRefGoogle Scholar
  3. Abouseoud M, Yataghene A, Amrane A, Maachi R (2008) Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. J Ind Microbiol Biotechnol 35:1303–1308CrossRefGoogle Scholar
  4. Adrian NR, Arnett CM (2007) Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. Chemosphere 66:1849–1856CrossRefGoogle Scholar
  5. Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Water Res 37:3499–3507CrossRefGoogle Scholar
  6. Anbeek C (1992) The dependence of dissolution rates on grain size for some fresh and weathered feldspars. Geochim Cosmochim Acta 56:3957–3970CrossRefGoogle Scholar
  7. Arnett CM, Adrian NR (2009) Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Biodegradation 20:15–26CrossRefGoogle Scholar
  8. Ask K, Décologne N, Asare N, Holme JA, Artur Y, Pelczar H, Camus P (2004) Distribution of nitroreductive activity toward nilutamide in rat. Toxicol Appl Pharmacol 201:1–9CrossRefGoogle Scholar
  9. Atikovic E, Suidan MT, Maloney SW (2008) Anaerobic treatment of army ammunition production wastewater containing perchlorate and RDX. Chemosphere 72:1643–1648CrossRefGoogle Scholar
  10. Avidano L, Gamalero E, Cossa GP, Carraro E (2005) Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol 30:21–33CrossRefGoogle Scholar
  11. Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: A review. J Haz Mat 178(1–3):10–28CrossRefGoogle Scholar
  12. Bayman P, Ritchey SD, Bennet JW (1995) Fungal interactions with the explosive RDX (hexahydro-l,3,5-trinitro-1,3,5-triazine). J Ind Microbiol Biotechnol 15:418–423Google Scholar
  13. Becanova J, Friedl Z, Simek Z (2010) Identification and determination of trinitrotoluenes and their degradation products using liquid chromatography-electrospray ionization mass spectrometry. Int J Mass Spectrom 291:133–139CrossRefGoogle Scholar
  14. Belkin F, Bishop RW, Sheely MV (1985) Analysis of explosives in water by capillary gas chromatography. J Chrom Sci 24:532–534CrossRefGoogle Scholar
  15. Bernstein A, Adar E, Nejidat A, Ronen Z (2011) Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation 22:997–1005CrossRefGoogle Scholar
  16. Bert V, Seuntjens P, Dejonghe W, Lacherez S, Thuy HT, Vandecasteele B (2009) Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites. Environ Sci Pollut Res Int 6:745–764CrossRefGoogle Scholar
  17. Berthelot Y, Trottier B, Robidoux PY (2009) Assessment of soil quality using bioaccessibility-based models and a biomarker index. Environ Int 35:83–90CrossRefGoogle Scholar
  18. Best EP, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman M (1997) Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater from the Iowa Army Ammunition Plant. Ann NY Acad Sci 829:179–194CrossRefGoogle Scholar
  19. Best EP, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments, Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38(14):3383–3396CrossRefGoogle Scholar
  20. Bhattacharyya J, Read D, Amos S, Dooley S, Killham K, Paton GI (2005) Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environ Poll 134:485–492CrossRefGoogle Scholar
  21. Binks PR, Nicklin S, Bruce NC (1995) Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322Google Scholar
  22. Bloem J, Hopkins DW, Benedetti A (eds) (2006) Microbiological methods for assessing soil quality. Oxfordshire. CABI Publishing, UK, p 307Google Scholar
  23. Boopathy R (2001) Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Biores Technol 76:241–244CrossRefGoogle Scholar
  24. Boopathy R (2002) Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. J Haz Mat 92:103–114CrossRefGoogle Scholar
  25. Boopathy R, Kupla CF, Wilson M (1993) Metabolism of 2, 4, 6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl Microbiol Biotechnol 39:270–275CrossRefGoogle Scholar
  26. Boopathy R, Manning J, Kulpa CF (1997) Optimization of environmental factors for the biological treatment of trinitrotoluene-contaminated soil. Arch Environ Contam Toxicol 32:94–98CrossRefGoogle Scholar
  27. Boopathy R, Manning J, Kulpa CF (1998) A laboratory study of the bioremediation of 2, 4, 6-trinitrotoluene-contaminated soil using aerobic/anoxic soil slurry reactor. Water Environ Res 70(1):80–86CrossRefGoogle Scholar
  28. Boparai HK, Comfort SD, Shea PJ, Sze JE (2008) Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments. Chemosphere 71:933–941CrossRefGoogle Scholar
  29. Boparai HK, Comfort SD, Satapanajaru T, Szecsody JE, Grossl PR, Shea PJ (2010) A biotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions. Chemosphere 79:865–872CrossRefGoogle Scholar
  30. Brannon JM, Price CB, Hayes C, Yost SL (2002) Aquifer soil cation substitution and adsorption of TNT, RDX, and HMX. Soil Sediment Contam 11:327–338CrossRefGoogle Scholar
  31. Brulle F, Morgan AJ, Cocquerelle C, Vandenbulcke F (2010) Transcriptomic underpinning of toxicant-mediated physiological function alterations in three terrestrial invertebrate taxa: A review. Environ Poll 158:2793–2808CrossRefGoogle Scholar
  32. Ceccani B, Masciandaro G, Garcia C, Macci C, Doni S (2006) Soil bioremediation: combination of earthworms and compost for the ecological remediation of a hydrocarbon polluted soil. Water Air Soil Poll 177:383–397CrossRefGoogle Scholar
  33. Cenas N, Prast S, Nivinskas H, Sarlauskas J, Arnér ESJ (2006) Interactions of nitro aromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. J Biol Chem 281:5593–5603CrossRefGoogle Scholar
  34. Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48CrossRefGoogle Scholar
  35. Chen D, Liu ZL, Banwart W (2011) Concentration-dependent RDX uptake and remediation by crop plants. Environ Sci Pollut Res 18:908–917CrossRefGoogle Scholar
  36. Cheng JY, Suidan MT, Venosa AD (1996) Abiotic reduction of 2,4-dinitrotoluene in the presence of sulfide minerals under anoxic conditions. Water Sci Technol 34:25–33Google Scholar
  37. Cho Y-S, Lee B-U, Kahng H-Y, Oh K-H (2009) Comparative analysis of 2,4,6-trinitrotoluene (TNT)-induced cellular responses and proteomes in Pseudomonas sp. HK-6 in two types of media. J Microbiol 47:220–224CrossRefGoogle Scholar
  38. Clark B, Boopathy R (2007) Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana army ammunition plant, Minden, Louisiana. J Haz Mat 143:643–648CrossRefGoogle Scholar
  39. Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuß J, König H (2007) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation 18:27–35CrossRefGoogle Scholar
  40. Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Poll 135:515–522CrossRefGoogle Scholar
  41. Cruz-Uribe O, Cheney DP, Rorrer GL (2007) Comparison of TNT removal from seawater by three marine macroalgae. Chemosphere 67:1469–1476CrossRefGoogle Scholar
  42. Cserháti T, Forgács E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348CrossRefGoogle Scholar
  43. Cyplik P, Marecik R, Piotrowska-Cyplik A, Olejnik A, Drożdżyńska A, Chrzanowski Ł (2011) Biological denitrification of high nitrate processing wastewaters from explosives production plant. Water Air Soil Pollut. doi: 10.1007/s11270-011-0984-5 Google Scholar
  44. Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Poll 158:1980–1983CrossRefGoogle Scholar
  45. De Lorme M (2008) Biotransformation of 2,4,6-trinitrotoluene by ruminal organisms. Dissertation, Oregon State University, April 25, pp 94Google Scholar
  46. De Oliveira IM, Bonatto D, Henriques JAP (2010) Nitroreductases: enzymes with environmental, biotechnological and clinical importance. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain, Formatex, pp 1008–1019Google Scholar
  47. De-Bashan LE, Hernandez J-P, Bashan Y (2011) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol. doi: 10.1016/j.apsoil.2011.09.003 Google Scholar
  48. Dodard SG, Powlowski J, Sunahara GI (2004) Biotransformation of 2,4,6-trinitrotoluene (TNT) by enchytraeids (Enchytraeus albidus) in vivo and in vitro. Environ Poll 131:263–273CrossRefGoogle Scholar
  49. Doran JW (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11CrossRefGoogle Scholar
  50. Douglas TA, Walsh ME, McGrath CJ, Weiss CA, Jones AM, Trainor TP (2008) The fate of nitro aromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and weathered soils. Proceedings of the army science conference (26th), Orlando, FloridaGoogle Scholar
  51. Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:204–206CrossRefGoogle Scholar
  52. Dubova L, Dz Zariņa (2004) Application of Toxkit microbiotests for toxicity assessment in soil and compost. Environ Toxicol 19:274–279CrossRefGoogle Scholar
  53. Dubova L, Limane B, Muter O, Versilovskis A, Zariņa D, Alsina I (2009) Effect of nitro aromatic compounds on the growth of potted plants. In: Mendez-Vilas A (ed) Current research topics in applied microbiology and microbial biotechnology. World Scientific Publishing Co., Spain, pp 24–28Google Scholar
  54. Ek H, Nilsson E, Dave G (2008) Effects of TNT leakage from dumped ammunition on fish and invertebrates in static brackish water systems. Ecotoxicol Environ Saf 69:104–111CrossRefGoogle Scholar
  55. Eriksson J, Frankki S, Shchukarev A, Skyllberg U (2004) Binding of 2,4,6-trinitrotoluene, aniline and nitrobenzene to dissolved and particulate soil organic matter. Environ Sci Technol 38:3074–3080CrossRefGoogle Scholar
  56. Erkelens M, Adetutu EM, Taha M, Tudararo-Aherobo L, Antiabong J, Provatas A, Ball AS (2012) Sustainable remediation—The application of bioremediated soil for use in the degradation of TNT chips. J Environ Manage 110(15):69–76CrossRefGoogle Scholar
  57. Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-Trinitrotoluene. Microbiol Mol Biol Rev 65:335–352CrossRefGoogle Scholar
  58. Eyers L, Stenuit B, Agathos SN (2008) Denitration of 2,4,6-trinitrotoluene by Pseudomonas aeruginosa ESA-5 in the presence of ferrihydrite. Appl Microbiol Biotechnol 79:489–497CrossRefGoogle Scholar
  59. Fellows RJ, Driver CR, Cataldo DA, Harvey SD (2006) Bioavailability of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the prairie vole (Microtus ochrogaster). Environ Toxicol Chem 25:1881–1886CrossRefGoogle Scholar
  60. Fernández M, Duque E, Pizarro-Tobías P, Van Dillewijn P, Wittich RM, Ramos JL (2009) Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microb Biotechnol 2:287–294CrossRefGoogle Scholar
  61. Flokstra BR, Van Aken B, Schnoor JL (2008) Microtox® toxicity test: detoxification of TNT and RDX contaminated solutions by poplar tissue cultures. Chemosphere 71:1970–1976CrossRefGoogle Scholar
  62. Franzle O (2006) Complex bioindication and environmental stress assessment. Ecol Indic 6:114–136CrossRefGoogle Scholar
  63. Freedman DL, Cashwell JM, Kim BJ (2002) Biotransformation of explosive-grade nitrocellulose under denitrifying and sulfidogenic conditions. Waste Manage 22:283–292CrossRefGoogle Scholar
  64. Frische T (2002) Screening for soil toxicity and mutagenicity using luminescent acteria—a case study of the explosive 2,4,6-trinitrotoluene (TNT). Ecotoxicol Environ Saf 51:133–144CrossRefGoogle Scholar
  65. Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms. Biotechnology 11b:145–167Google Scholar
  66. Fuchs L, Piola L, González EP, Oneto ML, Basack S, Kesten E, Casabé N (2011) Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT). Environ Monit Assess 175:127–137CrossRefGoogle Scholar
  67. Fuller ME, Manning JF (1997) Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83CrossRefGoogle Scholar
  68. Fuller ME, Hatzinger PB, Rungmakol D, Schuster RL, Steffan RJ (2004) Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation. Environ Toxicol Chem 23(2):313–324CrossRefGoogle Scholar
  69. Gabriel J (2010) Development of soil microbiology methods: from respirometry to molecular approaches. J Ind Microbiol Biotechnol 37:1289–1297CrossRefGoogle Scholar
  70. Gallagher EM, Young LY, McGuinness LM, Kerkhof LJ (2010) Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation. Appl Environ Microbiol 76:1695–1698CrossRefGoogle Scholar
  71. Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC (2008) Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J 56:963–974CrossRefGoogle Scholar
  72. George I, Eyers L, Stenuit B, Agathos SN (2008) Effect of 2,4,6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol 35:225–236CrossRefGoogle Scholar
  73. George IF, Liles MR, Hartmann M, Ludwig W, Goodman RM, Agathos SN (2009) Changes in soil Acidobacteria communities after 2,4,6-trinitrotoluene contamination. FEMS Microbiol Lett 296:159–166CrossRefGoogle Scholar
  74. Gerth A, Hebner A, Thomas H (2003) Natural remediation of TNT-contaminated water and soil. Acta Biotech 23:143–150CrossRefGoogle Scholar
  75. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393CrossRefGoogle Scholar
  76. Gong P, Wilke B-M, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157CrossRefGoogle Scholar
  77. Gong P, Basu N, Scheuhammer AM, Perkins EJ (2010) Neurochemical and electrophysiological diagnosis of reversible neurotoxicity in earthworms exposed to sublethal concentrations of CL-20. Environ Sci Pollut Res 17:181–186CrossRefGoogle Scholar
  78. Grube M, Muter O, Strikauska S, Gavare M, Limane B (2008) Application of FT-IR spectroscopy for control of the medium composition during biodegradation of nitro aromatic compounds. J Ind Microbiol Biotechol 35:1545–1549CrossRefGoogle Scholar
  79. Guimarães BCM, Arends JBA, van der Ha D, Van de Wiele T, Boon N, Verstraete W (2010) Microbial services and their management: Recent progresses in soil bioremediation technology. Appl Soil Ecol 46:157–167CrossRefGoogle Scholar
  80. Guo X, Xin B, Ma X, Xia Y, Chen S, Yang Y (2009) Biodegradation of trinitrotoluene by a bacterial consortium containing Klebsiella sp. and Burkholderia sp. Cuihua Xuebao/Chinese J Catalysis 30:1261–1268Google Scholar
  81. Gustavsson L, Engwall M (2012) Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms—Water, BOD, carbon and nutrient removal. Waste Man 32:104–109CrossRefGoogle Scholar
  82. Gwenin CD, Kalaji M, Williams PA, Kay CM (2011) A kinetic analysis of three modified novel nitroreductases. Biodegradation 22:463–474CrossRefGoogle Scholar
  83. Haberl R, Grego S, Langergraber G, Kadlec RH, Cicalini A-R, Dias SM, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003) Constructed wetlands for the treatment of organic pollutants. J Soils Sed 3:109–124CrossRefGoogle Scholar
  84. Han S, Mukherji ST, Rice A, Hughes JB (2011) Determination of 2,4- and 2,6-dinitrotoluene biodegradation limits. Chemosphere 85:848–853CrossRefGoogle Scholar
  85. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54(5):605–618CrossRefGoogle Scholar
  86. Herrera-Melián JA, Martín-Rodríguez AJ, Ortega-Méndez A, Araña J, Doña-Rodríguez JM, Pérez-Peña J (2012) Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. J Environ Manage 105(30):53–60CrossRefGoogle Scholar
  87. Hewitt AD, Jenkins TF, Ranney TA (2001) Field gas chromatography/thermionic detector system for the analysis of explosives in soils. U.S. Army cold regions research and engineering laboratory, Hanover, NH, ERDC/CRREL TR-01-9Google Scholar
  88. Hickman ZA, Reid BJ (2008) Earthworm assisted bioremediation of organic contaminants. Environ Int 34:1072–1081CrossRefGoogle Scholar
  89. Hilber I, Wyss GS, Mäder P, Bucheli TD, Meier I, Vogt L, Schulin R (2009) Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers. Environ Poll 157:2224–2230CrossRefGoogle Scholar
  90. Ho E-M, Chang H-W, Kim S-I, Kahng H-Y, Oh K-H (2004) Analysis of TNT (2,4,6-trinitrotoluene)-inducible cellular responses and stress shock proteome in Stenotrophomonas sp. OK-5. Curr Microbiol 49:346–352CrossRefGoogle Scholar
  91. Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2000) Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium. Can J Microbiol 46:110–118Google Scholar
  92. Hund-Rinke K, Simon M (2008) Bioavailability assessment of contaminants in soils via respiration and nitrification tests. Environ Poll 153:468–475CrossRefGoogle Scholar
  93. Jenkins TF, Walsh ME, Schumacher PW, Miyares PH, Bauer CF, Grant CL (1989) Liquid chromatographic method for determination of extractable nitroaromatic and nitramine residues in soil. J-Assoc Off Anal Chem 72:890–899Google Scholar
  94. Jenkins TF, Schumacher PW, Mason JG, Thorne PT (1996) On-site analysis for high concentrations of explosives in soil: extraction kinetics and dilution procedures. CRREL Special Report 96–10Google Scholar
  95. Johnson MS, McFarland CA, Bazar MA, Quinn MJ Jr, LaFiandra EM, Talent LG (2010) Toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in three vertebrate species. Arch Environ Contam Toxicol 58:836–843CrossRefGoogle Scholar
  96. Jones AM, Greer CW, Ampleman G, Thiboutot S, Lavigne J, Hawari J (1995) Biodegradability of selected highly energetic pollutants under aerobic conditions. In: Hinchee E, Hoeppel RE, Anderson DB (eds) Bioremediation of recalcitrant organics. Battelle Press, Columbus, pp 251–257Google Scholar
  97. Juhasz AL, Naidu R (2007) Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments. Rev Environ Contam Toxicol 191:163–215CrossRefGoogle Scholar
  98. Jung CM, Newcombe DA, Crawford DL, Crawford RL (2004) Detection and decontamination of residual energetics from ordnance and explosives scrap. Biodegradation 15:41–48CrossRefGoogle Scholar
  99. Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54CrossRefGoogle Scholar
  100. Kanekar SP, Kanekar PP, Sarnaik SS, Gujrathi NP, Shede PN, Kedargol MR, Reardon KF (2009) Bioremediation of nitro explosive wastewater by an yeast isolate Pichia sydowiorum MCM Y-3 in fixed film bioreactor. J Ind Microbiol Biotechnol 36:253–260CrossRefGoogle Scholar
  101. Karim K, Gupta SK (2002) Effects of alternative carbon sources on biological transformation of nitrophenols. Biodegradation 13:353–360CrossRefGoogle Scholar
  102. Kästner M, Cassiani G (2009) ModelPROBE: model driven soil probing, site assessment and evaluation. Rev Environ Sci Biotechnol 8:131–136CrossRefGoogle Scholar
  103. Kim Y, Webster DA, Stark BC (2005) Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into their chromosomes. J Ind Microbiol Biotechnol 32:148–154CrossRefGoogle Scholar
  104. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Meth 58:169–188CrossRefGoogle Scholar
  105. Koutsospyros A, Pavlov J, Fawcett J, Strickland D, Smolinski B, Braida W (2012) Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. J Haz Mat 219–220:75–81CrossRefGoogle Scholar
  106. Kröger M, Fels G (2007) Combined biological-chemical procedure for the mineralization of TNT. Biodegradation 18:413–425CrossRefGoogle Scholar
  107. Kröger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248CrossRefGoogle Scholar
  108. Kulkarni M, Chaudhari A (2007a) Biodegradation of p-nitrophenol by P. putida. Biores Technol 97:982–988CrossRefGoogle Scholar
  109. Kulkarni M, Chaudhari A (2007b) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage 85:496–512CrossRefGoogle Scholar
  110. Kumagai Y, Kikushima M, Nakai Y, Shimojo N, Kunimoto M (2004) Neuronal nitric oxide synthase (NNOS) catalyzes one-electron reduction of 2,4,6-trinitrotoluene, resulting in decreased nitric oxide production and increased nNOS gene expression: Implication for oxidative stress. Free Radical Biol Med 37:350–357CrossRefGoogle Scholar
  111. Kuncova G, Pazlarova J, Hlavata A, Ripp S, Sayler GS (2011) Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution, operational conditions and selectivity of free cells sensor. Ecol Indic 11:882–887CrossRefGoogle Scholar
  112. Kwon MJ, Finneran KT (2008) Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens. Biodegradation 19:705–715CrossRefGoogle Scholar
  113. Kwon MJ, Finneran KT (2010) Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material. Biodegradation 21:923–937CrossRefGoogle Scholar
  114. Labidi M, Ahmad D, Halasz A, Hawari J (2001) Biotransformation and partial mineralization of the explosive 2,4,6-trinitrotoluene (TNT) by rhizobia. Can J Microbiol 47:559–566CrossRefGoogle Scholar
  115. Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2004) Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55:1339–1348CrossRefGoogle Scholar
  116. Lamichhane KM, Babcock RW Jr, Turnbull SJ, Schenck S (2012) Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. J Haz Mat 243:334–339CrossRefGoogle Scholar
  117. Lavoie BL, Mayes MA, McKay LD (2012) Transport of explosive residue surrogates in saturated porous media. Water Air Soil Pollut 223(5):1983–1993CrossRefGoogle Scholar
  118. Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Poll 153:497–522CrossRefGoogle Scholar
  119. Lejbølle KB (2000) Risk assessment of genetically modified derivatives of Pseudomonas fluorescens F 113 for use in bioremediation of PCB contaminated soil. National Forest and Nature Agency, DenmarkGoogle Scholar
  120. Li H, Teppen BJ, Johnston CT, Boyd SA (2004) Thermodynamics of nitroaromatic compound adsorption from water by smectite clay. Environ Sci Technol 38:5433–5442CrossRefGoogle Scholar
  121. Li Y, Hsieh WP, Mahmudov R, Wei X, Huang CP (2013) Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater. J Haz Mat 244–245:403–411CrossRefGoogle Scholar
  122. Limane B, Juhanson J, Truu J, Truu M, Muter O, Dubova L, Zarina D (2009) Changes in microbial population affected by physico-chemical conditions of soils contaminated by explosives. In: Méndez-Vilas A (ed) Current research topics in applied microbiology and microbial biotechnology. Badajoz, Spain, Formatex, pp 637–640Google Scholar
  123. Limane B, Muter O, Juhanson J, Truu M, Truu J, Nolvak H (2011) Characterization of microbial community structure after application of different bioremediation approaches in TNT contaminated soil. Environmental Engineering, the 8th international conference, May 19–20, 2011, Vilnius, Lithuania, Selected papers. Vilnius Gediminas Technical University, pp 188-194Google Scholar
  124. Lin H-Y, Yu C-P, Chen Z-L (2012) Aerobic and anaerobic biodegradation of TNT by newly isolated Bacillus mycoides. Ecol Eng http://dx.doi.org/10.1016/j.ecoleng.2012.11.004
  125. Liu Z, He Y, Li F, Liu Y (2006) Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide. Environ Sci Pollut Res 13:328–332CrossRefGoogle Scholar
  126. Low D, Tan K, Anderson T, Cobb GP, Liu J, Jackson WA (2008) Treatment of RDX using down-flow constructed wetland mesocosms. Ecol Eng 32:72–80CrossRefGoogle Scholar
  127. Luan F, Xie L, Sheng J, Li J, Zhou Q, Zhai G (2012) Reduction of nitrobenzene by steel convert slag with Fe (II) system: The role of calcium in steel slag. J Haz Mat 217–218:416–421CrossRefGoogle Scholar
  128. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258CrossRefGoogle Scholar
  129. Maeda T, Nakamura R, Kadokami K, Ogawa HI (2007) Relationship between mutagenicity and reactivity or biodegradability for nitroaromatic compounds. Environ Toxicol Chem 26:237–241CrossRefGoogle Scholar
  130. Mahidol C (2005) Environmental biotechnology for developing countries: needs and priorities. J Ind Microbiol Biotechnol 32:492–495CrossRefGoogle Scholar
  131. Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007a) Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides. Environ Pollut 148:101–106CrossRefGoogle Scholar
  132. Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007b) High uptake of 2,4,6-trinitrotoluene by vetiver grass—potential for phytoremediation? Environ Pollut 146:1–4CrossRefGoogle Scholar
  133. Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276CrossRefGoogle Scholar
  134. Mankiewicz-Boczek J, Nalęcz-Jawecki G, Drobniewska A, Kaza M, Sumorok B, Izydorczyk K, Zalewski M, Sawicki J (2008) Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicol Environ Saf 71:830–836CrossRefGoogle Scholar
  135. Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177CrossRefGoogle Scholar
  136. McGuinnes M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247CrossRefGoogle Scholar
  137. Medina VF, Larson SL, Agwaramgbo L, Perez W (2002) Treatment of munitions in soils using phytoslurries. Int J Phytorem 4:143–156CrossRefGoogle Scholar
  138. Medina VF, Larson SL, Agwaramgbo L, Perez W, Escalon L (2004) Treatment of trinitrotoluene by crude plant extracts. Chemosphere 55:725–732CrossRefGoogle Scholar
  139. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375CrossRefGoogle Scholar
  140. Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900CrossRefGoogle Scholar
  141. Meyns B, Van de Wiele T, Doulami F, Marlé C, De Sloovere A, Van de Wiele K, Fant F, Verstraete W (2002) Remediation of TNT-contaminated soils by anaerobic proteinaceous immobilisation. Water Air Soil Poll 138:37–49CrossRefGoogle Scholar
  142. Mohan SV, Ramakrishna M, Shailaja S, Sarma PN (1997) Influence of soil-water ratio on the performance of slurry phase bioreactor treating herbicide contaminated soil. Biores Technol 98:2584–2589Google Scholar
  143. Mondragon-Parada ME, Ruiz-Ordaz N, Tafoya-Garnica A, Juarez-Ramırez C, Curiel-Quesada E, Galındez-Mayer J (2008) Chemostat selection of a bacterial community able to degrade s-triazinic compounds: continuous simazine biodegradation in a multi-stage packed bed biofilm reactor. J Ind Microbiol Biotechnol 35:767–776CrossRefGoogle Scholar
  144. Moreira MT, Feijoo G, Lema JM (2003) Fungal bioreactors: applications to white-rot fungi. Rev Environ Sci Biotechnol 2:247–259CrossRefGoogle Scholar
  145. Moshe SSB, Ronen Z, Dahan O, Weisbrod N, Groisman L, Adar E, Nativ R (2009) Sequential biodegradation of TNT, RDX and HMX in a mixture. Environ Pollut 157:2231–2238CrossRefGoogle Scholar
  146. Mulla SI, Hoskeri RS, Shouche YS, Ninnekar HZ (2011) Biodegradation of 2-Nitrotoluene by Micrococcus sp. strain SMN-1. Biodegradation 22:95–102CrossRefGoogle Scholar
  147. Mulla SI, Talwar MP, Bagewadi ZK, Hoskeri RS, Ninnekar HZ (2012) Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere.http://dx.doi.org/10.1016/j.chemosphere.2012.10.030
  148. Muter O, Versilovskis A, Scherbaka R, Grube M, Zarina D (2008) Effect of plant extract on the degradation of nitro aromatic compounds by soil microorganisms. J Ind Microbiol Biotechol 35:1539–1543CrossRefGoogle Scholar
  149. Muter O, Potapova K, Limane B, Sproge K, Jakobsone I, Cepurnieks G, Bartkevics V (2012) The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J Environ Manage 98:51–55CrossRefGoogle Scholar
  150. MWH Americas, Inc (2004) Five-year review report, first five-year review report for Joliet Army Ammunition plant, soils operable unit. Will County, MWH Americas, Inc., Illinois, p 126Google Scholar
  151. Naja G, Apiratikul R, Pavasant P, Volesky B, Hawari J (2009) Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Environ Poll 157:2405–2412CrossRefGoogle Scholar
  152. Naseby DC, Lynch JM (1997) Functional impact of genetically modified micro-organisms on the soil ecosystem. In: Zelikoff JT, Schepers J, Lynch JM (eds) Ecotoxicology: responses, biomarkers and risk assessment. SOS Publications, Fair Haven, pp 419–442Google Scholar
  153. Naumova RP, Selivanovskaya S, Mingatina FA (1988) Possibilities for the deep bacterial destruction of 2, 4, 6-trinitrotoluene. Mikrobiologia 57:218–222Google Scholar
  154. Nejidat A, Kafka L, Tekoah Y, Ronen Z (2008) Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1. Biodegradation 19:313–320CrossRefGoogle Scholar
  155. Neuwoehner J, Schofer A, Erlenkaemper B, Steinbach K, Hund-Rinke TK, Eisentraeger A (2007) Toxicological characterization of 2, 4, 6-trinitrotoluene, its transformation products, and two nitramine explosives. Environ Toxicol Chem 26:1090–1099CrossRefGoogle Scholar
  156. Newcombe DA, Crawford RL (2007) Transformation and fate of 2, 4, 6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils. Biodegradation 18:741–754CrossRefGoogle Scholar
  157. Nicklin S, Bruce NC, French CE (1999) Biodegradation of explosives. WO/1999/032636 international application no.: PCT/GB1998/003646Google Scholar
  158. Nõlvak H, Truu J, Truu M, Juhanson J, Cepurnieks G, Bartkevics V, Limane B, Muter O (2013) Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation. doi:  10.3846/16486897.2012.721784
  159. Oh B-T, Alvarez PJJ (2002) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) degradation in biologically-active iron columns. Water Air Soil Poll 141:325–335CrossRefGoogle Scholar
  160. Oh KH, Kim YJ (1998) Degradation of explosive 2, 4, 6-trinitrotoluene by s-triazine degrading bacterium isolated from contaminated soil. Bull Environ Contam Toxicol 61:702–708CrossRefGoogle Scholar
  161. Oh B-T, Shea PJ, Drijber RA, Vasilyeva GK, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation 14:309–319CrossRefGoogle Scholar
  162. Olbrich H (2006) The molasses. Biotechnologie-Kempe GmbH, Berlin, p 131Google Scholar
  163. Ouyang Y, Huang CH, Huang DY, Lin D, Cui L (2007) Simulating uptake and transport of TNT by plants using STELLA. Chemosphere 69:1245–1252CrossRefGoogle Scholar
  164. Páca J, Halecký M, T Hudcová, Bajpaix B (2008) Aerobic biodegradation of dinitrotoluenes in batch systems by pure and mixed cultures. Folia Microbiol 53:105–109CrossRefGoogle Scholar
  165. Panikov NS, Sizova MV, Ros D, Christodoulatos C, Balas W, Nicolich S (2007) Biodegradation kinetics of the nitramine explosive CL-20 in soil and microbial cultures. Biodegradation 18:317–332CrossRefGoogle Scholar
  166. Panz K, Miksch K (2012) Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manage 113(30):85–92CrossRefGoogle Scholar
  167. Parales RE, Bruce NC, Schmid A, Wackett LP (2002) Biodegradation, biotransformation, and biocatalysis (B3). Appl Environ Microbiol 68:4699–4709CrossRefGoogle Scholar
  168. Park C, Kim T-H, Kim S, Kim S-W, Lee J, Kim S-H (2003) Optimization for biodegradation of 2, 4, 6-trinitrotoluene (TNT) by Pseudomonas putida. J Biosci Bioeng 95:567–571Google Scholar
  169. Paul P, Ghosh U (2011) Influence of activated carbon amendment on the accumulation and elimination of PCBs in the earthworm Eisenia fetida. Environ Poll 159:3763–3768CrossRefGoogle Scholar
  170. Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformaton of 2, 4, 6-trinitrotoluene by the aquatic plant Myriophyllum spicatum. Environ Toxicol Chem 17:2266–2273Google Scholar
  171. Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172CrossRefGoogle Scholar
  172. Peres CM, Agathos SN (2000) Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnol Ann Rev 6:197–220CrossRefGoogle Scholar
  173. Perreault NN, Manno D, Halasz A, Thiboutot S, Ampelman G, Hawari J (2012) Aerobic biotransformation of 2,4-dinitroanisole in soil and soil Bacillus sp. Biodegradation. doi: 10.1007/s10532-011-9508-7 Google Scholar
  174. Persoone G, Chial B (2003) Low-cost microbiotests for toxicity monitoring during bioremediation of contaminated soils. In: Šašek V, Glaser JA, Baveye P (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academic Publishers, Netherlands, pp 155–163CrossRefGoogle Scholar
  175. Persoone G, Wadhia K (2009) Comparison between Toxkit microbiotests and standard tests. In: Moser H, Römbke J (eds) Ecotoxicological characterization of waste. Springer Science + Business Media, LLC., New York, pp 213–221CrossRefGoogle Scholar
  176. Peterson FJ, Mason RP, Hovsepian J, Holtzman IL (1979) Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem 254:4009–4014Google Scholar
  177. Pokorný J, Květ J, Rejšková A, Brom J (2010) Wetlands as energy-dissipating systems. J Ind Microbiol Biotechnol 37:1299–1305CrossRefGoogle Scholar
  178. Popesku JT, Zhao SA, Hawari JS, Ward J (2003) High TNT-transforming activity by a mixed culture acclimated and maintained on crude-oil-containing media. Can J Microbiol 49:362–366CrossRefGoogle Scholar
  179. Prak DJL (2007) Solubilization of nitrotoluenes in micellar nonionic surfactant solutions. Chemosphere 68:1961–1967CrossRefGoogle Scholar
  180. Priestley JT, Coleman NV, Duxbury T (2006) Growth rate and nutrient limitation affect the transport of Rhodococcus sp. strain DN22 through sand. Biodegradation 17:571–576CrossRefGoogle Scholar
  181. Qadir LR, Osburn-Atkinson EJ, Swider-Lyons KE, Cepak VM, Rolison DR (2003) Sonochemically induced decomposition of energetic materials in aqueous media. Chemosphere 50:1107–1114CrossRefGoogle Scholar
  182. Qiu X, Wu P, Zhang H, Li M, Yan Z (2009) Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. Biores Technol 100:5243–5248CrossRefGoogle Scholar
  183. Radtke CW, Gianotto D, Roberto FF (2002) Effects of particulate explosives on estimating contamination at a historical explosives testing area. Chemosphere 46:3–9CrossRefGoogle Scholar
  184. Ramos JL, González-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281CrossRefGoogle Scholar
  185. Rho D, Hodgson J, Thiboutot S, Ampleman G, Hawari J (2001) Transformation of 2, 4, 6-Trinitrotoluene (TNT) by immobilized Phanerochaete chrysosporium under fed-batch and continuous TNT feeding conditions. Biotechnol Bioeng 73(4):271–281CrossRefGoogle Scholar
  186. Robertson BK, Jjemba PK (2005) Enhanced bioavailability of sorbed 2, 4, 6-trinitrotoluene (TNT) by a bacterial consortium. Chemosphere 58:263–270CrossRefGoogle Scholar
  187. Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2001) Chronic toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Poll 111:283–292CrossRefGoogle Scholar
  188. Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2002) TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol 43:379–388CrossRefGoogle Scholar
  189. Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2, 4, 6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44:198–209CrossRefGoogle Scholar
  190. Robidoux PY, Gong P, Sarrazin M, Bardai G, Paquet L, Hawari J, Dubois C, Sunahara GI (2004a) Toxicity assessment of contaminated soils from an antitank firing range. Ecotoxicol Environ Saf 58:300–313CrossRefGoogle Scholar
  191. Robidoux PY, Svendsen C, Sarrazin M, Thiboutot S, Ampleman G, Hawari J, Weeks JM, Sunahara GI (2004b) Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Arch Environ Contam Toxicol 48:56–67CrossRefGoogle Scholar
  192. Robles-González IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Fact 7:5CrossRefGoogle Scholar
  193. Rocheleau S, Lachance B, Kuperman RG, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2008) Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne. Environ Poll 156:199–206CrossRefGoogle Scholar
  194. Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Wat Res 35:2101–2111CrossRefGoogle Scholar
  195. Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In: Hutzinger O (ed) The handbook of environmental chemistry. Springer-Verlag, Berlin, Vol. 3(G)Google Scholar
  196. Šarlauskas J, Nemeikaitė-Čėnienė A, Anusevičius Z, Misevičienė L, Marozienė A, Markevičius A, Čėnas N (2004) Enzymatic redox properties of novel nitrotriazole explosives implications for their toxicity. Z Naturforsch C59:399–404Google Scholar
  197. Savard K, Berthelot Y, Auroy A, Spear PA, Trottier B, Robidoux PY (2007) Effects of HMX-lead mixtures on reproduction of the earthworm Eisenia andrei. Arch Environ Contam Toxicol 53:351–358CrossRefGoogle Scholar
  198. Schaefer M (2004) Assessing 2, 4, 6-trinitrotoluene (TNT)-contaminated soil using three different earthworm test methods. Ecotoxicol Environ Saf 57:74–80CrossRefGoogle Scholar
  199. Schaefer M, Juliane F (2007) The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. App Soil Ecol 36:53–62CrossRefGoogle Scholar
  200. Schäfer R, Achazi RK (1999) The toxicity of soil samples containing TNT and other ammunition derived compounds in the enchytraeid and collembola-biotest. Environ Sci Pollut Res 6:213–219CrossRefGoogle Scholar
  201. Schnoor JL, Van Aken B (2004) Methods and compositions for degradation of nitroaromatic and nitramine pollutants. USPTO patent application 20080032382Google Scholar
  202. Schoenmuth BW, Pestemer W (2004a) Dendroremediation of trinitrotoluene. Part 1: Literature overview and research concept. Environ Sci Pollut Res 11:273–278CrossRefGoogle Scholar
  203. Schoenmuth BW, Pestemer W (2004b) Dendroremediation of trinitrotoluene. Part 2: Fate of radio-labelled TNT in trees. Environ Sci Pollut Res 11(5):331–339Google Scholar
  204. She Z, Xie T, Zhu Y, Li L, Tang G, Huang J (2012) Study on the aerobic biodegradability and degradation kinetics of 3-NP; 2,4-DNP and 2,6-DNP. J Haz Mat 241–242:478–485CrossRefGoogle Scholar
  205. Sheibani G, Naeimpoor F, Hejazi P (2011a) Screening effective factors in slurry phase bioremediation of 2,4,6-trinitrotoluene (TNT) contaminated soil. Iranian J Chem Eng 8:29–40Google Scholar
  206. Sheibani G, Naeimpoor F, Hejazi P (2011b) Statistical factor-screening and optimization in slurry phase bioremediation of 2,4,6-trinitrotoluene contaminated soil. J Haz Mat 188:1–9CrossRefGoogle Scholar
  207. Shen CF, Guiot SR, Thiboutot S, Ampleman G, Hawari J (1998) Fate of explosives and their metabolites in bioslurry treatment processes. Biodegradation 8:339–347CrossRefGoogle Scholar
  208. Shen CF, Hawari JA, Ampleman G, Thiboutot S, Guiot SR (2000) Origin of p-cresol in the anaerobic degradation of trinitrotoluene. Can J Microbiol 46(2):119–124Google Scholar
  209. Shen J, He R, Yu H, Wang L, Zhang J, Sun X, Li J, Han W, Xu L (2009) Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Biores Technol 100:1922–1930CrossRefGoogle Scholar
  210. Sherburne LA, Shrout JD, Alvarez PJJ (2005) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation 16:539–547CrossRefGoogle Scholar
  211. Sheremata T, Hawari J (2000) Cyclodextrins for desorption and solubilization of 2,4,6-trinitrotoluene and its metabolites from soil. Environ Sci Technol 34:3462–3468CrossRefGoogle Scholar
  212. Shin K-H, Lim Y, Ahn J-H, Khil J, Cha C-J, Hur H-G (2005) Anaerobic biotransformation of dinitrotoluene isomers by Lactococcus lactis subsp. lactis strain 27 isolated from earthworm intestine. Chemosphere 61:30–39CrossRefGoogle Scholar
  213. Siciliano SD, Greer CW (2000) Plant-bacterial combinations to phytoremediate soil contaminated with high concentrations of 2,4,6-trinitrotoluene. J Environ Qual 29:311–316CrossRefGoogle Scholar
  214. Sikora FJ, Almond RA, Behrends LL, Hoagland JJ, Kelly DA, Phillips WD, Rogers WJ, Summers RK, Thornton FC, Trimm JR, Dader DF (1998) Demonstration results of phytoremediation of explosives-contaminated groundwater using constructed wetlands at the Milan army ammunition plant, Milan, Tennessee Vol 4. Ft. Belvoir defense technical information center DEC, p 394Google Scholar
  215. Smets BF, Yin H, Esteve-Nuñez A (2007) TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 76:267–277CrossRefGoogle Scholar
  216. Snellinx Z, Nepovím A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002) Biological remediation of explosives and related nitroaromatic compounds. Environ Sci Pollut Res 9(1):48–61CrossRefGoogle Scholar
  217. Spain JC (1995) Biodegradation of nitroaromatic compounds. Ann Rev Microbiol 49:523–555CrossRefGoogle Scholar
  218. Stahl JD, Aust SD (1995) Biodegradation of 2,4,6-trinitrotoluene by the white rot fungus Phanerochaete chrysosporium. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 117–134CrossRefGoogle Scholar
  219. Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2: The influence of geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688CrossRefGoogle Scholar
  220. Stenuit B, Agathos SN (2009) Rapid and unbiased colorimetric quantification of nitrite and ammonium ions released from 2,4,6-trinitrotoluene during biodegradation studies: Eliminating interferences. Int Biodeter Biodegr 63:116–122CrossRefGoogle Scholar
  221. Stenuit BA, Agathos SN (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 88:1043–1064CrossRefGoogle Scholar
  222. Stenuit B, Eyers L, El Fantroussi S, Agathos SN (2005) Promising strategies for the mineralisation of 2,4,6-trinitrotoluene. Rev Environ Sci Biotechnol 4:39–60CrossRefGoogle Scholar
  223. Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26:561–575CrossRefGoogle Scholar
  224. Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan JL, Matthijs S, Cornelis P, Agathos SN (2009) Denitration of 2,4,6-trinitrotoluene in aqueous solutions using small-molecular-weight catalyst(s) secreted by Pseudomonas aeruginosa ESA-5. Environ Sci Technol 43:2011–2017CrossRefGoogle Scholar
  225. Sung K, Munster CL, Corapcioglu MY, Drew MC, Park S, Rhykerd R (2004) Phytoremediation and modeling of contaminated soil using eastern gamagrass and annual ryegrass. Water Air Soil Pollut 159:175–195CrossRefGoogle Scholar
  226. Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850CrossRefGoogle Scholar
  227. Taha MR, Soewarto IH, Acar YB, Gale RJ, Zappi ME (1997) Surfactant enhanced desorption of TNT from soil. Water Air Soil Poll 100:33–48CrossRefGoogle Scholar
  228. Tai H-S, He W-H (2007) A novel model of organic waste composting in Taiwan military community. Waste Manage 27:664–674CrossRefGoogle Scholar
  229. Tejada M, Benítez C, Parrado J (2011) Application of biostimulants in benzo(a)pyrene polluted soils: Short-time effects on soil biochemical properties. Appl Soil Ecol 50:21–26CrossRefGoogle Scholar
  230. Torre CD, Corsi I, Arukwe A, Valoti M, Focardi S (2008) Interactions of 2,4,6-trinitrotoluene (TNT) with xenobiotic biotransformation system in European eel Anguilla anguilla (Linnaeus, 1758). Ecotoxicol Environ Saf 71:798–805CrossRefGoogle Scholar
  231. Travis ER, Hannink NK, Van der Gast CJ, Thompson IP, Rosser SJ, Bruce NC (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861CrossRefGoogle Scholar
  232. Travis ER, Bruce NC, Rosser SJ (2008a) Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Environ Pollut 153:432–439CrossRefGoogle Scholar
  233. Travis ER, Bruce NC, Rosser SJ (2008b) Microbial and plant ecology of a long-term TNT-contaminated site. Environ Pollut 153:19–126Google Scholar
  234. United States environmental protection agency (1993) Approaches for the remediation of federal facility sites contaminated with explosive or radioactive wastes. EPA/625/R-93/013. USEPA, WashingtonGoogle Scholar
  235. Van Dillewijn P, Wittich R-M, Caballero A, Ramos J-L (2008) Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds. Appl Environ Microbiol 74:6820–6823CrossRefGoogle Scholar
  236. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar
  237. Vasilyeva GK, Kreslavski VD, Shea PJ (2002) Catalytic oxidation of TNT by activated carbon. Chemosphere 47:311–317CrossRefGoogle Scholar
  238. Vila M, Mehier S, Lorber-Pascal S, Laurent F (2007) Phytotoxicity to and uptake of RDX by rice. Environ Poll 145:813–817CrossRefGoogle Scholar
  239. Waisner S, Hansen L, Fredrickson H, Nestler C, Zappi M, Banerji S, Bajpai R (2002) Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions. J Haz Mat B95:91–106CrossRefGoogle Scholar
  240. Wang Z, Ye Z, Zhang M, Bai X (2010) Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter. Proc Biochem 45:993–1001CrossRefGoogle Scholar
  241. Ward OP (2004) The industrial sustainability of bioremediation processes. J Ind Microbiol Biotechnol 31:1–4CrossRefGoogle Scholar
  242. Weidhaas JL, Chang DPY, Schroeder ED (2009) Biodegradation of nitroaromatics and RDX by isolated Rhodococcus opacus. J Environ Eng 135:1025–1031CrossRefGoogle Scholar
  243. Williams RT, Zieganfuss PS, Sisk WE (1992) Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J Ind Microbiol 9:137–144CrossRefGoogle Scholar
  244. Wu Z, Guo L, Qin S, Li C (2011) Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biotechnol Published online: 31 Aug 2011. doi:  10.1007/s10295-011-1028-2
  245. Wythes JR, Wainwright DH, Blight GW (1978) Nutrient composition of Queensland molasses. Aust J Exp Agric Anim Husb 18:629–634CrossRefGoogle Scholar
  246. Yadav A, Garg VK (2011) Industrial wastes and sludges management by vermicomposting. Rev Environ Sci Biotechnol 10:243–276CrossRefGoogle Scholar
  247. Yin H, Wood TK, Smets BF (2005) Reductive transformation of TNT by Escherichia coli: Pathway description. Appl Microbiol Biotechnol 67:397–404CrossRefGoogle Scholar
  248. Yoon JM, Oliver DJ, Shanks JV (2007) Phytotoxicity and phytoremediation of 2,6-dinitrotoluene using a model plant, Arabidopsis thaliana. Chemosphere 68:1050–1057CrossRefGoogle Scholar
  249. Zeng K, Hwang HM, Zhang Y, Cook S (2004) Assessing cytotoxicity of photosensitized transformation products of 2,4,6-trinitrotoluene (TNT) and atrazine with freshwater microbial assemblages. Environ Toxicol 19:490–496CrossRefGoogle Scholar
  250. Zhang C, Hughes JB (2003) Biodegradation pathways of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere 50:665–671CrossRefGoogle Scholar
  251. Zhang J, Xin Y, Liu H, Wang S, Zhou N (2008) Metabolism-independent chemotaxis of Pseudomonas sp. strain WBC-3 toward aromatic compounds. J Environ Sci 20:1238–1242CrossRefGoogle Scholar
  252. Zhao Q, Ye Z, Zhang M (2010) Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation. Chemosphere 80:947–950CrossRefGoogle Scholar
  253. Zheng Y, Liu D, Liu S, Xu S, Yuan Y, Xiong L (2009) Kinetics and mechanisms of p-nitrophenol biodegradation by Pseudomonas aeruginosa HS-D38. J Environ Sci 21:1194–1199CrossRefGoogle Scholar
  254. Zhuang L, Gui L, Gillham RW (2012) Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic consortia from a contaminated site. Chemosphere 89(7):810–816CrossRefGoogle Scholar
  255. Ziganshin AM, Gerlach R, Borch T, Naumov AV, Naumova RP (2007) Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Appl Environ Microbiol 73:7898–7905CrossRefGoogle Scholar
  256. Ziganshin AM, Naumova RP, Pannier AJ, Gerlach R (2010) Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica. Chemosphere 79:426–433CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Microbiology & BiotechnologyUniversity of LatviaRigaLatvia

Personalised recommendations