Skip to main content

Clusterization in Ternary Fission

  • Chapter
Clusters in Nuclei, Volume 3

Part of the book series: Lecture Notes in Physics ((LNP,volume 875))

Abstract

This lecture notes are devoted to the new kind of ternary decay of low excited heavy nuclei called by us “collinear cluster tri-partition” (CCT) due to the features of the effect observed, namely, decay partners fly away almost collinearly and at least one of them has magic nucleon composition. At the early stage of our work the process of “true ternary fission” (fission of the nucleus into three fragments of comparable masses) was considered to be undiscovered for low excited heavy nuclei. Another possible prototype—three body cluster radioactivity—was also unknown. The most close to the CCT phenomenon, at least cinematically, stands so called “polar emission”, but only very light ions (up to isotopes of Be) were observed so far.

Manifestations of new decay channel observed in the frame of different experimental approaches are discussed. Special attention is paid to the connection between conventional binary fission and CCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Hahn, F. Strassmann, Naturwissenschaften 27, 89 (1939)

    Article  ADS  MATH  Google Scholar 

  2. K.A. Petrzhak, G.N. Flerov, J. Phys. USSR 3, 275 (1940)

    Google Scholar 

  3. L. Meitner, O. Frisch, Nature 143, 239 (1939)

    Article  ADS  MATH  Google Scholar 

  4. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935)

    Article  ADS  MATH  Google Scholar 

  5. W.J. Swiatecki, in Proceedings of the Second UN Conference on the Peaceful Uses of Atomic Energy, Geneva, vol. 15 (United Nations, Geneva, 1958), p. 651

    Google Scholar 

  6. P. Möller, J.R. Nix, Nucl. Phys. A 272, 502 (1976)

    Article  ADS  Google Scholar 

  7. V.M. Strutinsky, N.Ya. Lyashchenko, N.A. Popov, Nucl. Phys. 46, 639 (1963)

    Article  Google Scholar 

  8. H. Diehl, W. Greiner, Phys. Lett. B 45, 35 (1973)

    ADS  Google Scholar 

  9. H. Diehl, W. Greiner, Nucl. Phys. A 229, 29 (1974)

    Article  ADS  Google Scholar 

  10. G. Royer, J. Mignen, J. Phys. G, Nucl. Part. Phys. 18, 1781 (1992)

    Article  ADS  Google Scholar 

  11. X.-z. Wu, J.A. Maruhn, W. Greiner, J. Phys. G, Nucl. Part. Phys. 10, 645 (1984)

    Article  ADS  Google Scholar 

  12. D.N. Poenaru, W. Greiner, J.H. Hamilton, A.V. Ramayya, E. Hourany, R.A. Gherghescu, Phys. Rev. C 59, 3457 (1999)

    Article  ADS  Google Scholar 

  13. R.B. Tashkhodjaev, A.K. Nasirov, W. Scheid, Eur. Phys. J. A 47, 136 (2011)

    Article  ADS  Google Scholar 

  14. K. Manimaran, M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011)

    Article  ADS  Google Scholar 

  15. K. Manimaran, M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010)

    Article  ADS  Google Scholar 

  16. V.I. Zagrebaev, A.V. Karpov, W. Greiner, Phys. Rev. C 81, 044608 (2010)

    Article  ADS  Google Scholar 

  17. K.R. Vijayaraghavan, W. von Oertzen, M. Balasubramaniam, Eur. Phys. J. A 48, 27 (2012)

    Article  ADS  Google Scholar 

  18. M.L. Muga, Phys. Rev. Lett. 11, 129 (1963)

    Article  ADS  Google Scholar 

  19. P. Schall, P. Heeg, M. Mutterer, J.P. Theobald, Phys. Lett. B 191, 339 (1987)

    Article  ADS  Google Scholar 

  20. F. Gönnenwein, Nucl. Phys. A 734, 213 (2004)

    Article  ADS  Google Scholar 

  21. P. Singer, Yu. Kopach, M. Mutterer, M. Klemens, A. Hotzel, D. Schwalm, P. Thirolf, M. Hesse, in Proceedings of the 3rd International Conference on Dynamical Aspects of Nuclear Fission (JINR, Dubna, 1996), p. 262

    Google Scholar 

  22. A.V. Ramayya et al., Phys. Rev. Lett. 81, 947 (1998)

    Article  ADS  Google Scholar 

  23. A.V. Ramayya et al., Prog. Part. Nucl. Phys. 46, 221 (2001)

    Article  ADS  Google Scholar 

  24. A.V. Daniel et al., in Proceedings of the International Workshop on the New Applications of Nuclear Fission, Bucharest, Romania (World Scientific, Singapore, 2004), p. 41

    Chapter  Google Scholar 

  25. S.A. Karamian, I.V. Kuznetsov, Yu.Ts. Oganessian, Yu.E. Penionzhkevich, Yad. Fiz. 5, 959 (1967)

    Google Scholar 

  26. P. Glässel, D.v. Harrach, H.J. Specht, L. Grodzins, Z. Phys. A 310, 189 (1983)

    Article  ADS  Google Scholar 

  27. C.-M. Herbach et al., Nucl. Phys. A 712, 207 (2002)

    Article  ADS  Google Scholar 

  28. G. Royer, F. Haddad, J. Phys. G, Nucl. Part. Phys. 20, L131 (1994)

    Article  ADS  Google Scholar 

  29. A.A. Ogloblin, G.A. Pik-Pichak, S.P. Tretyakova, in Proceedings of the International Workshop Fission Dynamics of Atomic Clusters and Nuclei, Luso, Portugal, 2000 (World Scientific, Singapore, 2001), p. 143

    Chapter  Google Scholar 

  30. C. Wagemans, in The Nuclear Fission Process, ed. by C. Wagemans (CRS, Boca Raton, 1991). Chap. 12

    Google Scholar 

  31. E. Piasecki, M. Sowinski, L. Nowicki, A. Kordyasz, E. Cieślak, W. Czarnacki, Nucl. Phys. A 255, 387 (1975)

    Article  ADS  Google Scholar 

  32. S.W. Cosper, J. Cerny, R.C. Gatti, Phys. Rev. 154, 1193 (1967)

    Article  ADS  Google Scholar 

  33. Yu.V. Pyatkov, V.V. Pashkevich, Yu.E. Penionzhkevich, V.G. Tishchenko, C.-M. Herbach, in Proceedings of the International Conference of Nuclear Physics “Nuclear Shells—50 Years”, Dubna, 1999, ed. by Yu.Ts. Oganessian et al. (World Scientific, Singapore, 2000), p. 144

    Google Scholar 

  34. Yu.V. Pyatkov et al., in Proceeding of the International Symposium on Exotic Nuclei EXON-2001, Baikal Lake, 2001, ed. by Yu.E. Penionzhkevich et al. (World Scientific, Singapore, 2002), p. 181

    Chapter  Google Scholar 

  35. H.-G. Ortlepp et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 403, 65 (1998)

    Article  ADS  Google Scholar 

  36. D.V. Kamanin et al., JINR Preprint 15-2007-182, Dubna (2007)

    Google Scholar 

  37. A. Oed, P. Geltenbort, F. Gönnenwein, Nucl. Instrum. Methods 205, 451 (1983)

    Article  Google Scholar 

  38. A.N. Tyukavkin et al., Instrum. Exp. Tech. 52, 508 (2009)

    Article  Google Scholar 

  39. Yu.V. Pyatkov et al., JINR Preprint E15-2004-65, Dubna (2004)

    Google Scholar 

  40. V.F. Apalin, Yu.N. Gritsyuk, I.E. Kutikov, V.I. Lebedev, L.A. Mikaelian, Nucl. Phys. 71, 553 (1965)

    Article  Google Scholar 

  41. L. Meyer, Phys. Status Solidi B 44, 253 (1971)

    Article  ADS  Google Scholar 

  42. A.V. Kravtsov, G.E. Solyakin, Phys. Rev. C 60, 017601 (1999)

    Article  ADS  Google Scholar 

  43. M.A. Mariscotti, Nucl. Instrum. Methods 50, 309 (1967)

    Article  ADS  Google Scholar 

  44. Yu.V. Pyatkov, V.G. Tishchenko, V.V. Pashkevich, V.A. Maslov, D.V. Kamanin, I.V. Kljuev, W.H. Trzaska, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 488, 381 (2002)

    Article  ADS  Google Scholar 

  45. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  46. D. Rochman, I. Tsekhanovich, F. Gönnenwein, V. Sokolov, F. Storrer, G. Simpson, O. Serot, Nucl. Phys. A 735, 3 (2004)

    Article  ADS  Google Scholar 

  47. Yu.V. Pyatkov et al., Phys. At. Nucl. 73, 1309 (2010)

    Article  Google Scholar 

  48. D.V. Kamanin, Yu.V. Pyatkov, A.N. Tyukavkin, Yu.N. Kopatch, Int. J. Mod. Phys. E 17, 2250 (2008)

    Article  ADS  Google Scholar 

  49. Yu.V. Pyatkov et al., Rom. Rep. Phys. 59, 569 (2007)

    Google Scholar 

  50. A.N. Tyukavkin et al., Preprint No. R15-2008-88, JINR (Joint Inst. Nucl. Res., Dubna, 2008)

    Google Scholar 

  51. Yu.V. Pyatkov et al., Eur. Phys. J. A 45, 29 (2010)

    Article  ADS  Google Scholar 

  52. D.V. Kamanin et al., in Proceedings of the 18th International Seminar on Interaction of Neutrons with Nuclei: “Neutron Spectroscopy, Nuclear Structure, Related Topics”, Dubna, 2010 (2011), p. 102

    Google Scholar 

  53. A.N. Tyukavkin et al., Prib. Teh. Eksp. 4, 66 (2009)

    Google Scholar 

  54. A.A. Alexandrov et al., in Proceedings of 15th International Seminar on Interaction of Neutrons with Nuclei: “Neutron Spectroscopy, Nuclear Structure, Related Topics”, Dubna, 2007 (2008), p. 248

    Google Scholar 

  55. H. Märton, private communication

    Google Scholar 

  56. S.I. Mulgin, K.-H. Schmidt, A. Grewe, S.V. Zhdanov, Nucl. Phys. A 640, 375 (1998)

    Article  ADS  Google Scholar 

  57. V.V. Pashkevich, Yu.V. Pyatkov, A.V. Unzhakova, Int. J. Mod. Phys. E 18, 907 (2009)

    Article  ADS  Google Scholar 

  58. Yu.V. Pyatkov et al., Eur. Phys. J. A 48, 94 (2012)

    Article  ADS  Google Scholar 

  59. C. Butz-Jorgensen, H.H. Knitter, Nucl. Phys. 490, 307 (1988), and Refs. therein

    Article  Google Scholar 

  60. D.V. Kamanin et al., Phys. At. Nucl. 66, 1655 (2003)

    Article  Google Scholar 

  61. S.I. Mulgin, V.N. Okolovich, S.V. Zhdanov, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 388, 254 (1997), and Refs. therein

    Article  ADS  Google Scholar 

  62. M. Moszyński, B. Bengtson, Nucl. Instrum. Methods 91, 73 (1971)

    Article  ADS  Google Scholar 

  63. Yu.V. Pyatkov et al., in Proceedings of the 14th International Seminar on Interaction of Neutrons with Nuclei: “Neutron Spectroscopy, Nuclear Structure, Related Topics”, Dubna, 2006 (2007), p. 134

    Google Scholar 

  64. D.V. Kamanin et al., in Proceedings of the International Symposium on Exotic Nuclei (EXON-2009), ed. by Yu.E. Penionzhkevich et al. AIP Conference Proceedings, Sochi, 2009, p. 385

    Google Scholar 

  65. J.F. Wild et al., Phys. Rev. C 41, 640 (1990)

    Article  ADS  Google Scholar 

  66. O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002)

    Article  ADS  Google Scholar 

  67. V.K. Rao, V.K. Bhargava, S.G. Marathe, S.M. Sahakundu, R.H. Iyer, Phys. Rev. C 9, 1506 (1974)

    Article  ADS  Google Scholar 

  68. V.K. Rao, V.K. Bhargava, S.G. Marathe, S.M. Sahakundu, R.H. Iyer, Phys. Rev. C 19, 1372 (1979)

    Article  ADS  Google Scholar 

  69. C. Wagemans (ed.), The Nuclear Fission Process (CRC Press, Boca Raton, 1991). Chap. 6

    Google Scholar 

  70. F. Gönnenwein, M. Mutterer, Yu. Kopatch, Europhys. News 36, 11 (2005)

    Article  ADS  Google Scholar 

  71. A.N. Tyukavkin, PhD thesis, MEPhI, Moscow (2009)

    Google Scholar 

  72. MCNP—Monte Carlo N-Particle code. http://mcnp-green.lanl.gov

  73. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  74. http://en.wikipedia.org/wiki/Hough_transform

  75. L.G. Shapiro, G.G. Stockman, Computer Vision (Prentice Hall, New York, 2001)

    Google Scholar 

  76. N.V. Kornilov, F.-J. Hambsch, A.S. Vorobyev, Nucl. Phys. A 789, 55 (2007)

    Article  ADS  Google Scholar 

  77. A.S. Vorobyev, O.A. Shcherbakov, Yu.S. Pleva, A.M. Gagarski, G.V. Val’ski, G.A. Petrov, V.I. Petrova, T.A. Zavarukhina, in Proceedings of the 17th International Seminar on Interaction of Neutrons with Nuclei: “Neutron Spectroscopy, Nuclear Structure, Related Topics”, Dubna, 2009 (2010), p. 60

    Google Scholar 

  78. www.srim.org

  79. U. Quade et al., Nucl. Phys. A 487, 1 (1988)

    Article  ADS  Google Scholar 

  80. H. Wohlfarth, W. Lang, H. Dann, H.-G. Clerc, K.H. Schmidt, H. Schrader, Z. Phys. A 287, 153 (1978)

    Article  ADS  Google Scholar 

  81. FZR 92-09, Mai 1992, Herausgeber: H. Prade, F. Donau.

    Google Scholar 

  82. D.V. Kamanin et al., in Proceedings of the 7th International Conference on Dynamical Aspects of Nuclear Fission (DANF-2011), Smolenice Castle (2011 in press)

    Google Scholar 

  83. Y.S. Kim, P. Hofmann, H. Daniel, T. von Egidy, T. Haninger, F.-J. Hartmann, M.S. Lotfranaei, H.S. Plendl, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 329, 403 (1993)

    Article  ADS  Google Scholar 

  84. D. Poenaru, W. Greiner, in Cluster in Nuclei, vol. 1, ed. by C. Beck. Lect. Notes Phys., vol. 818 (2010), p. 1

    Chapter  Google Scholar 

  85. V. Zagrebaev, W. Greiner, in Cluster in Nuclei, vol. 1, ed. by C. Beck. Lect. Notes Phys., vol. 818 (2010), p. 267

    Chapter  Google Scholar 

  86. G.G. Adamian, N.V. Antonenko, W. Scheid, in Cluster in Nuclei, vol. 2, ed. by C. Beck. Lect. Notes Phys., vol. 848 (2012), p. 165

    Chapter  Google Scholar 

  87. D.V. Kamanin et al., in Proceedings of the 18th International Seminar on Interaction of Neutrons with Nuclei: “Neutron Spectroscopy, Nuclear Structure, Related Topics”, Dubna, 2010 (2011), p. 102

    Google Scholar 

  88. F. Gönnenwein, M. Mutterer, A. Gagarski, I. Guseva, G. Petrov, V. Sokolov, T. Zavarukhina, Yu. Gusev, J. von Kalben, V. Nesvizhevski, T. Soldner, Phys. Lett. B 652, 13 (2007)

    Article  ADS  Google Scholar 

  89. Yu. Pyatkov et al., in Proc. of the Int. Symposium on Exotic Nuclei “EXON2006”. AIP Conference Proceedings, Khanty-Mansiysk, Russia, 2006 (2007), p. 144

    Google Scholar 

  90. Yu. Pyatkov et al., in Proc. 14th Int. Sem. on Interaction of Neutrons with Nuclei “ISINN-14” (JINR, Dubna, 2007), p. 134

    Google Scholar 

  91. Yu. Pyatkov (HENDES and FOBOS Collaborations), Proc. VI Int. Conf. on Dynamical Aspects of Nuclear Fission “DANF2006” (World Scientific, Singapore, 2008), p. 248

    Book  Google Scholar 

  92. Yu. Pyatkov (HENDES and FOBOS Collaborations), Proc. 15th Int. Sem. on Interaction of Neutrons with Nuclei “ISINN-15” (JINR, Dubna, 2008), p. 281

    Google Scholar 

  93. D.V. Kamanin et al., Phys. Part. Nucl. Lett. 7, 122 (2010)

    Article  Google Scholar 

  94. S.H. Freid, J.L. Anderson, G.R. Choppin, J. Inorg. Nucl. Chem. 30, 3155 (1968)

    Article  Google Scholar 

  95. M.L. Muga, C.R. Rice, W.A. Sedlacek, Phys. Rev. Lett. 18, 404 (1967)

    Article  ADS  Google Scholar 

  96. Yu.V. Pyatkov, G.G. Adamian, N.V. Antonenko, V.G. Tishchenko, Nucl. Phys. A 611, 355 (1996)

    Article  ADS  Google Scholar 

  97. Yu.V. Pyatkov, V.V. Pashkevich, Yu.E. Penionzhkevich, V.G. Tishchenko, A.V. Unzhakova, H.-G. Ortlepp, P. Gippner, C.-M. Herbach, W. Wagner, Nucl. Phys. A 624, 140 (1997)

    Article  ADS  Google Scholar 

  98. I. Tsekhanovich, H.-O. Denschlag, M. Davi, Z. Buyukmumcu, F. Gonnenwein, S. Oberstedt, H.R. Faust, Nucl. Phys. A 688, 633 (2001)

    Article  ADS  Google Scholar 

  99. Yu.V. Pyatkov, V.V. Pashkevich, W.H. Trzaska, G.G. Adamian, N.V. Antonenko, D.V. Kamanin, V.A. Maslov, V.G. Tishchenko, A.V. Unzhakova, Phys. At. Nucl. 67, 1726 (2004)

    Article  Google Scholar 

  100. V.V. Vladimirski, JETP USSR 5, 673 (1957)

    Google Scholar 

  101. Yu.V. Pyatkov, R.A. Shekhmametiev, Phys. At. Nucl. 57, 1182 (1994)

    Google Scholar 

  102. S. Ćwiok, W. Nazarewicz, J.X. Saladin, W. Płóciennik, A. Johnson, Phys. Lett. B 322, 304 (1994)

    Article  ADS  Google Scholar 

  103. D.M. Gorodisskiy, S.I. Mulgin, V.N. Okolovich, A.Ya. Rusanov, S.V. Zhdanov, Phys. Lett. B 548, 45 (2002)

    Article  ADS  Google Scholar 

  104. V.V. Pashkevich, Nucl. Phys. A 169, 275 (1971)

    Article  ADS  Google Scholar 

  105. Yu.V. Pyatkov, D.V. Kamanin, W. von Oertzen, A.A. Alexandrov, I.A. Alexandrova, N.A. Kondtayev, E.A. Kuznetsova, O.V. Strekalovsky, V.E. Zhuchko, in Proc. 20 International Seminar on Interaction of Neutrons with Nuclei “ISINN-20”, Alushta, Ukraine (JINR, Dubna, 2013), p. 104

    Google Scholar 

  106. Yu.P. Pytyev, Pattern Recognit. Image Anal. 3, 19 (1993)

    Google Scholar 

  107. Yu.V. Pyatkov, D.V. Kamanin, O.V. Falomkina, Yu.P. Pyt’ev, B.M. Herbst, W.H. Trzaska, Pattern Recognit. Image Anal. 20, 82 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This text presents research results of the work supported in part by the grant of the Department of Science and Technology of South Africa and by a grant of the Federal Ministry of Education and Research (BMBF) of Germany. We would like to thank Prof. W. von Oertzen and Dr. W. Trzaska for fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kamanin .

Editor information

Editors and Affiliations

Appendix

Appendix

6.1.1 A.1 Reliability of Linear Structures in the Scatter Plot of Fragments Masses

Due to the small number of events in the linear structures discussed in Figs. 6.24(a), 6.26, 6.27, 6.29, 6.30 the question arises whether the structures have a physical reality, i.e. if they are not a random sequence of points. In order to answer this question a special simulation based on Hough transformation was performed.

The Hough transform is a feature extraction technique used in image analysis, computer vision, and digital image processing [74, 75]. The simplest case of Hough transform is the linear transform for detecting straight lines. In the image space, the straight line can be described as y=mx+b and can be graphically plotted for each pair of image points (x, y). In the Hough transform, a main idea is to consider the characteristics of the straight line not as image points x or y, but in terms of its parameters, here the slope parameter m and the intercept parameter b. For computational reasons, it is better to parametrise the lines in the Hough transform with two other parameters, commonly referred to as R and θ (Fig. 6.45).

Fig. 6.45
figure 45

Parameterization of the line in Hough transform

Actually, the straight line on a plane (Fig. 6.45) can be set as follows:

$$ x\times\cos(\theta) + y\times\sin(\theta) = R, $$
(6.5)

where R—the length of the perpendicular lowered on a straight line from the beginning of coordinates, θ—angle between a perpendicular to a straight line and the axis OX, changes within the limits of 0–2π, R is limited by the size of the entrance image.

In view of step-type representation of entrance data (in the form of a matrix with elements “1”—presence of a point, “0”—it absence), the phase space (R, θ) also is represented in a discrete kind. In this space the grid to which one bin corresponds a set of straight lines with close values of R and θ is entered. For each cell of a grid (R i ,R i+1)×(θ i ,θ i+1) (in other words for each Hough transform bin) the number of points with coordinates (x, y), satisfying to the equation (6.5), where θ i θθ i+1,R i RR i+1, is counted up. The size of bins is obtained empirically.

Besides the steps on R and θR, Δθ) in the real program code realizing Hough transform, there are the additional parameters responsible for the decision—whether all the points, satisfying Eq. (6.5), are necessary to attribute an analyzed straight line. So, if the distance in pixels (cells of the matrix under analysis) between extreme points of a line segment less than set number n—it is rejected. When the code finds two line segments associated with the same Hough transform bin that are separated by less than the set distance d, it merges them into a single line segment.

A lower part of the scatter plot shown in Fig. 6.27 below M 1=40 amu was chosen for the analysis (Fig. 6.46). The straight line (marked by the arrow) united nine points was recognized using Hough transform algorithm at appropriate choice of the principal parameters (ΔR, Δθ, n, d).

Fig. 6.46
figure 46

Part of the distribution shown in Fig. 6.26(a) chosen for estimation of a reliability of the line structures. Monte-Carlo simulation were performed in the circle region marked by the dash line. See text for details

We tried to estimate the probability of a random realization of the line of such length and tilted to the abscissa axis at an arbitrary angle. A sequence of patterns within randomly distributed points inside was generated. Each circular pattern included precisely the same number of points as those in the initial distribution in Fig. 6.46. An area of circular shape was chosen in order to avoid a priori distinguished direction (for instance, diagonal in a rectangular area). Each pattern was processed with the Hough transform algorithm “tuned” earlier on revealing the line under discussion. Among one hundred patterns analyzed only two of them provided a positive answer. In other words, a probability of a random realization of the line under discussion is about 2 %.

Another approach based on the methods of morphological analysis of images [106, 107] was applied as well in order to estimate the probability of random realization of the rectangle seen in Fig. 6.26(b). This probability was estimated to be less than 1 %.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamanin, D.V., Pyatkov, Y.V. (2014). Clusterization in Ternary Fission. In: Beck, C. (eds) Clusters in Nuclei, Volume 3. Lecture Notes in Physics, vol 875. Springer, Cham. https://doi.org/10.1007/978-3-319-01077-9_6

Download citation

Publish with us

Policies and ethics