Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 359 Accesses

Abstract

An accurate determination of the angle \(\gamma \) of the Unitary Triangle is one of the most important goals of the LHCb experiment. The LHCb detector is a single-arm spectrometer at the LHC, optimised for beauty and charm flavour physics. As the angle \(\gamma \) is the least experimentally constrained parameter of the Unitary Triangle, its precise experimental determination can be used to test the validity of the Standard Model. The Unitary Triangle phase \(\gamma \) can be extracted in \(B \rightarrow DK\) decays at tree-level, exploiting the interference between \(b \rightarrow c(\bar{u}s)\) and \(b \rightarrow u(\bar{c}s)\) transitions. This interference is sensitive to \(\gamma \) and can give measurable charge asymmetries. In particular, \(\gamma \ne 0\) is required to produce direct \(C \! P\) violation in \(B\) decays and this is the only \(C \! P\)-violating mechanism for the decay of charged \(B^\pm \) mesons. In this thesis, an analysis of \(C \! P\) violation in \(B^{\pm } \rightarrow DK^{\pm }\) and \(B^{\pm } \rightarrow D\pi ^{\pm }\) decays is presented, where the \(D\) meson is reconstructed in the two-body final states: \(K^{\pm }\pi ^{\mp }\), \(K^+K^-\), \(\pi ^+\pi ^-\) and \(\pi ^{\pm }K^{\mp }\). The analysis uses the full 2011 LHCb dataset of 1.0\({\text {fb}}^{-1}\), collected from \(pp\) collisions at \(\sqrt{s}\) = 7\(\mathrm \,TeV \). Several \(C \! P\)-related quantities, e.g. the ratio of \(B \rightarrow DK\) and \(B \rightarrow D\pi \) branching fractions and their charge asymmetries, are measured via a simultaneous fit to the invariant mass distributions of the modes considered. The suppressed \(B^{\pm }\rightarrow DK^{\pm }\) mode is observed for the first time with \(\approx 10\sigma \) significance. Once all measurements are combined, direct \(C \! P\) violation is established in \(B^{\pm }\) decays with a total significance of \(5.8\sigma \). The measured \(C \! P\) observables are summarised here with their statistical uncertainties and assigned systematic uncertainties:

$$\begin{aligned} R_{C \! P +}&= 1.007 \pm 0.038 \pm 0.012 \\ A_{C \! P +}&= 0.145 \pm 0.032 \pm 0.010 \\ R_{\mathrm{ADS}(K)}&= 0.0152 \pm 0.0020 \pm 0.0004 \\ A_{\mathrm{ADS}(K)}&= -0.52 \pm 0.15 \pm 0.02 \\ R_{\mathrm{ADS}(\pi )}&= 0.00410 \pm 0.00025 \pm 0.00005 \\ A_{\mathrm{ADS}(\pi )}&= 0.143 \pm 0.062 \pm 0.011 \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although these conditions have been attributed to Sakharov, they were not listed explicitly in his paper in the current form.

  2. 2.

    A more general definition of the \(C \! P\) operator would be \(CP|X^0\rangle = e^{+i\xi }|\bar{X}^0\rangle \) and \(CP|\bar{X}^0\rangle = e^{-i\xi }|{X}^0\rangle \), but the phase \(\xi \) is arbitrary and is chosen to be equal to 0 here for simplicity.

  3. 3.

    The strong \(C \! P\) problem and \(C \! P\) violation in the lepton sector are not treated here.

  4. 4.

    Note that the strong phase in the suppressed \(D\) decay carries a minus sign, unlike the definition in the \(B\) decay.

References

  1. F. Halzen, A.D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics. (Wiley & Sons, New York, 1984)

    Google Scholar 

  2. Particle Data Group, Nakamura, K et al., Review of particle physics, J. Phys. G37, 075021 (2010)

    Google Scholar 

  3. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory. (Harper-Collins, New York, 1995)

    Google Scholar 

  4. W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics. (Springer, Berlin, 2007)

    Google Scholar 

  5. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)

    Google Scholar 

  6. P. W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964)

    Google Scholar 

  7. A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. J. Exp. Theor. Phys. 5, 24–27 (1967)

    Google Scholar 

  8. E. Noether, Invariante variations probleme (Math-phys, Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, 1918), p. 235

    Google Scholar 

  9. H.P. Strapp, Derivation of the \(CPT\) theorem and the connection between spin and statistics from postulates of the S-Matrix theory. Phys. Rev. Lett. 125, 2139 (1962)

    ADS  Google Scholar 

  10. O.W. Greenberg, \(CPT\) Violation implies violation of Lorentz invariance. Phys. Rev. Lett. 89, 231602 (2002)

    Article  ADS  Google Scholar 

  11. C.S. Wu et al., Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413 (1957)

    Google Scholar 

  12. J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the 2\(\pi \) decay of the k(2)0 meson. Phys. Rev. Lett. 13, 138 (1964)

    Article  ADS  Google Scholar 

  13. The BABAR collaboration, Aubert, B et al., The BaBar detector. Nucl. Instrum. Meth. A479, 1 (2002) arXiv:hep-ex/0105044

    Google Scholar 

  14. A. Abashian et al., The belle detector. Nucl. Instrum. Meth. A479, 117 (2002)

    Google Scholar 

  15. R. Blair et al., The CDF-II detector: technical design report. Fermilab PUB-96-390-E (1996)

    Google Scholar 

  16. A. Abachi et al., The D0 Upgrade, Fermilab PUB-96-357-E (1996)

    Google Scholar 

  17. A. Angelopoulos et al., First direct observation of time-reversal non-invariance in the neutral-kaon system. Phys. Lett. B 444(12), 43 (1998)

    Google Scholar 

  18. M. Gell-Mann, A. Pais, Behavior of neutral particles under charge conjugation. Phys. Rev. 97, 1387 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652 (1973)

    Google Scholar 

  20. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531 (1963)

    Article  ADS  Google Scholar 

  21. S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with Lepton-Hadron symmetry. Phys. Rev. D 2, 1285 (1970)

    Article  ADS  Google Scholar 

  22. J. Aubert et al., Experimental observation of a heavy particle \(J\). Phys. Rev. Lett. 33, 1404 (1974)

    Article  ADS  Google Scholar 

  23. S.W. Herb et al., Observation of a dimuon resonance at 9.5 GeV in 400-GeV proton-nucleus collisions. Phys. Rev. Lett. 39, 252 (1977)

    Google Scholar 

  24. L.-L. Chau, W.-Y. Keung, Comments on the parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 53, 1802 (1984)

    Google Scholar 

  25. Lincoln Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 51, 1945 (1983)

    Article  ADS  Google Scholar 

  26. A.J. Buras, M.E. Lautenbacher, G. Ostermaier, Waiting for the top quark mass, \(K^+ \rightarrow \pi ^+ \nu \bar{nu}\), \(B_s^0 - \bar{B}_s^0\) mixing, and CP asymmetries in B decays. Phys. Rev. D 50, 3433 (1994)

    Google Scholar 

  27. C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP nonconservation. Phys. Rev. Lett. 55, 1039 (1985)

    Article  ADS  Google Scholar 

  28. CKM fitter group, J. Charles et al., Predictions of selected flavor observables within the standard model. Phys. Rev. D 84, 033005 (2011)

    Google Scholar 

  29. M. Gronau, D. London, How to determine all the angles of the unitarity triangle from \(B_{d}^{0} \rightarrow D KS\) and \(B_{s}^{0} \rightarrow D phi\). Phys. Lett. B253, 483 (1991)

    Google Scholar 

  30. M. Gronau, D. Wyler, On determining a weak phase from CP asymmetries in charged B decays. Phys. Lett. B265, 172 (1991)

    Google Scholar 

  31. Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012, arXiv:1207.1158

    Google Scholar 

  32. D. Atwood, I. Dunietz, A. Soni, Enhanced CP violation with \(B \rightarrow K D^{0}(\bar{D}^{0})\) modes and extraction of the CKM angle\(\gamma \). Phys. Rev. Lett. 78, 3257 (1997) http://xxx.lanl.gov/abs/hep-ph/9612433

  33. D. Atwood, I. Dunietz, A. Soni, Improved methods for observing CP violation in \( Bpm to K D\) and measuring the CKM phase g. Phys. Rev. D63, 036005 (2001) http://xxx.lanl.gov/abs/hep-ph/0008090

  34. Belle collaboration, Y. Horii et al., Evidence for the suppressed decay\(B\rightarrow DK^{-}, D \rightarrow K^{+} \pi ^{-} \). Phys. Rev. Lett. 106, 231803 (2011) http://arXiv:1103.5951

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gandini .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gandini, P. (2014). Introduction. In: Observation of CP Violation in B± → DK± Decays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01029-8_1

Download citation

Publish with us

Policies and ethics