Productivity Potentials of the Global Land Resource for Cropping and Grazing

  • Lothar Mueller
  • Uwe Schindler
  • Bruce C. Ball
  • Elena Smolentseva
  • Victor G. Sychev
  • T. Graham Shepherd
  • Manzoor Qadir
  • Katharina Helming
  • Axel Behrendt
  • Frank Eulenstein
Part of the Environmental Science and Engineering book series (ESE)


The chapter gives an overview of global land potentials, crop yields and their limiting factors, and of methods to evaluate the productivity potential of land. Maintaining the capacity of the global land resource to produce plant biomass which can be used for humans is one of the most challenging issues of the 21st century. We need methodologies to observe and control the status of the potential productivity of agricultural and other lands. Methods of overall soil quality assessment which include the most significant factors and indicators relevant to soil productivity potentials can be useful tools for monitoring and managing the global soil resource sustainably. The aim was to find a common basis for soil productivity evaluation, as required by a global community of land users to allow achievement of high productivity in the context of a sustainable multifunctional use of landscapes. Results showed that soil types or reference groups in most existing soil classifications are largely defined on pedogenetic criteria and provide insufficient information to assess soil functionality. Traditional specific soil and land evaluation schemes already exist at national levels. They are based on different concepts of soil fertility or quality, local soil properties and the types of land use and management that prevail in the region or country. Their soil data inputs differ, ratings are not transferable and not applicable in transnational studies. At a transnational level, methods like agro-ecological zoning or ecosystem and crop models provide reliable assessments of land productivity potentials. Such methods are not intended for a field scale application to detect main soil constraints or to derive soil management recommendations in situ. A comparative analysis of several soil and land evaluation methods revealed the usefulness of indicator-based approaches applicable reliably, simply and consistently over different scales, from field level to large regions (aided by soil maps). Basic soil survey methods, including visual tactile soil structure assessment, are useful diagnostic tools for the recognition of productivity limiting soil attributes and estimation of indicator values. We advocate a straightforward indicator-based soil functional assessment system supplementing the current WRB (2006) classification or the coming Universal Soil Classification. It operates as a useful tool for monitoring, planning and management decisions based on soil quality (SQ) by detecting properties and limitation of soils for cropping and grazing and by providing estimates of attainable crop yields over different scales. The Muencheberg Soil Quality Rating (M-SQR), described in a chapter of Part II, has the potential to serve as a global reference assessment method of soil productivity potentials consistently over different scales. It combines visual methods of soil assessment (methods of soil survey, visual assessment of soil structure) with climate data in expert-based evaluation, classification and ranking schemes. M-SQR has been successfully tested in most agricultural regions worldwide. It provides concrete results about soil quality but also a frame for further research towards sustainable agricultural practices.


Soil functions Soil quality Crop yield Sustainable agriculture Land rating 


  1. Agronomic Interpretations Working Group (1995) Land suitability rating system for agricultural crops: 1. Spring-seeded small grains. In: Pettapiece WW (ed.) Agriculture and agri-food Canada, Centre for Land and Biological Resources Research, Tech. Bull. 1995-6E, Ottawa, p 90Google Scholar
  2. Ahmad S, Islam M, Mirza SN (2012) Rangeland degradation and management approaches in Balochistan, Pakistan. Pak J Bot 44:127–136 (Special Issue)Google Scholar
  3. Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962CrossRefGoogle Scholar
  4. Asner GP, Heidebrecht KB (2005) Desertification alters regional ecosystem- climate Inter-actions. Glob Change Biol 11:182–194CrossRefGoogle Scholar
  5. Bakker MM, Govers G, Jones RA, Rounsevell MDA (2007) The effect of soil erosion on Europe‘s crop yields. Ecosystems 10:1209–1219CrossRefGoogle Scholar
  6. Ball BC, Batey T, Munkholm LJ (2007) Field assessment of soil structural quality—a development of the Peerlkamp test. Soil Use Manag 23:329–337CrossRefGoogle Scholar
  7. Batey T, McKenzie DC (2006) Soil compaction: identification directly in the field. Soil Use Manag 22:123–131CrossRefGoogle Scholar
  8. Blanco-Canqui H, Lal R (2009) Crop residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci 28:139–163CrossRefGoogle Scholar
  9. Blum WEH (1993) Soil protection concept of the council of Europe and integrated soil research. In: Eijsackers HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Soil and environment, vol 1. Kluwer Academic Publishers, Dordrecht, pp 37–47CrossRefGoogle Scholar
  10. Bodenaufnahmesysteme in Österreich (2001) Bodeninformationen für Land-, Forst-, Wasser- und Abfallwirtschaft, Naturschutz-, Landschafts-, Landes- und Raumplanung, Agrarstrukurelle Planung, Bodensanierung und -regeneration sowie Universitäten, Schulen und Bürger. Mitteilungen der Österreichischen Bodenkundlichen Gesellschaft Heft 62, zugleich eine Publikation des Umweltbundesamtes Wien, 2001, p 221. Online Accessed on 12 Feb 2010
  11. Boonman JG, Mikhalev SS (2005) Chapter 10, the Russian steppe, In: Suttie JM, Reynolds SG, Batello C (eds) Grasslands of the world. Plant production and protection series No. 34, Food And Agriculture Organization of the United Nations, Rome 2005. Accessed on 28 Nov 2012
  12. Borlaug N (2007) Feeding a hungry world. Science 318:359CrossRefGoogle Scholar
  13. Bremer E, Ellert K (2004) Soil quality indicators: a review with implications for agricultural ecosystems in Alberta. Report prepared for: Alberta environmentally sustainable agriculture soil quality program, Alberta agriculture, food and rural development 2004. Online$department/deptdocs.nsf/all/aesa8681. Accessed on 12 Feb 2010
  14. Brunotte J, Senger M, Haaren V, Heyn M, Brandhuber J, Voßhenrich R, Epperlein H, Vorderbrügge J, Ortmeier T, Lorenz B, Kyas M (2011) Einfache Feldgefügeansprache für den Praktiker., Johann Heinrich von Thünen Institut (vTI) für Agrartechnologie Braunschweig, and Gesellschaft für Konservierende Bodenbearbeitung e. V. (GKB) Neuenhagen, 2. Auflage, p 2Google Scholar
  15. Catt JA (2001) The agricultural importance of loess. Earth Sci Rev 54:213–229 (Hindawi Publishing Corporation)CrossRefGoogle Scholar
  16. Deininger K, Byerlee D, Lindsay J, Norton A, Selod H, Stickler M (2011) Rising global interest in farmland: Can it yield sustainable and equitable benefits? The World Bank, Washington, DC, doi:  10.1596/978-0-8213-8591-3, p 214. Accessed on 12 Feb 2013
  17. Derpsch R, Friedrich T, Kassam A, Li H (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3(1):1–25. Open Access at, Accessed on 12 Jan 2013
  18. Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, Pening FW, de Vries T, Scherr SJ, Sompatpanit S (eds) Responses to land degradation. Proceedings of 2nd international conference on land degradation and desertification, Khon Kaen, Thailand, Oxford Press, New Delhi, India. Online Accessed on 12 Feb 2010
  19. European Commission (2009) New challenges for agricultural research: climate change, food security, rural development, agricultural knowledge systems, 2nd scar foresight exercise. Directorate-General for Research, Food, Agriculture and Fisheries, and Biotechology, p 104. Accessed on 12 Feb 2010
  20. FAO (2008) Visual soil assessment (VSA). Field guides. Food and Agriculture Organization of the United Nations (FAO), Rome. Accessed on 28 Nov 2012
  21. FAO (2012) AQUASTAT database. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 13 Nov 2012 9:33Google Scholar
  22. Fischer G, van Velthuizen H, Shah M, Nachtergaele F (2002) Global agro-ecological assessment for agriculture in the 21st century: methodology and results. International Institute for Applied Systems Analysis, Laxenburg, Austria, p 154Google Scholar
  23. Gavrilyuk FY (1974) Bonitirovka pochv. Moskva.: Vysshaya shkola, p 270Google Scholar
  24. Golden M, Micheli E, Ditzler C, Eswaran H, Owens P, Zhang G, McBratney A, Hempel J, Montanarella L, Schad P (2010) Time for a universal soil classification system. In: Gilkes RJ, Prakongkep N (eds) Proceedings of 19th world congress of soil science. Soil solutions for a changing world. Published on DVD, pp 48–51Google Scholar
  25. Gupta R, Kienzler K, Martius C, Mirzabaev A, Oweis T, de Pauw E, Qadir M, Shideed K, Sommer R, Thomas R, Sayre K, Carli C, Saparov A, Bekenov M, Sanginov S, Nepesov M, Ikramov R (2009) Research prospectus: a vision for sustainable land management research in Central Asia. ICARDA Central Asia and Caucasus program. Sustainable agriculture in Central Asia and the Caucasus series No.1. CGIAR-PFU, Tashkent, Uzbekistan, p 84Google Scholar
  26. Helming K, Tscherning K, König B, Sieber S, Wiggering H, Kuhlman T, Wascher D, Perez-Soba M, Smeets P, Tabbush P, Dilly O, Hüttl RF, Bach H (2008) Ex ante impact assessment of land use change in European regions : the SENSOR approach. In: Helming K, Pérez-Soba M, Tabbush P (eds) Sustainability impact assessment of land use changes. Springer, Berlin, pp 77–105CrossRefGoogle Scholar
  27. Huber S, Prokop G, Arrouays D, Banko G, Bispo A, Jones RJA, Kibblewhite MG, Lexer W, Möller A, Rickson RJ, Shishkov T, Stephens M, Toth G, Van den Akker JJH, Varallyay G, Verheijen FGA, Jones AR (eds) (2008) Environmental assessment of soil for monitoring: volume I indicators and criteria. EUR 23490 EN/1. Office for the Official Publications of the European Communities, Luxembourg, p 339Google Scholar
  28. Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Phil Trans R Soc B 365:2835–2851. doi: 10.1098/rstb.2010.0153 (Review paper)CrossRefGoogle Scholar
  29. Jones RJA, Spoor G, Thomasson AJ (2003) Vulnerability of subsoils in Europe to compaction: a preliminary analysis. Soil Tillage Res 73:131–143CrossRefGoogle Scholar
  30. Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition and framework for evaluation. Soil Sci Soc Am J 61(1):4–10CrossRefGoogle Scholar
  31. Kazakh Ministry of Environmental Protection (2007) Environmental monitoring and information management system for sustainable land use design guidelines for the SKO subsystem. KazakhstanMinistry of Environmental Protection, Kazakhstan Asian Development Bank: TA-4375; Mott Mc Donald 11th Nov 2007. Accessed on 23 Nov 2012
  32. Keys to Soil Taxonomy (2010) Eleventh edition. Accessed on 28 Nov 2012
  33. Lal R (2006) Enhancing crop yield in the developing countries through restoration of soil organic carbon pool in agricultural lands. Land Degrad Dev 17:187–209CrossRefGoogle Scholar
  34. Lal R (2008) Soils and sustainable agriculture. A Rev Agron Sustain Dev 28(2008):57–64CrossRefGoogle Scholar
  35. Lal R (2009) Soils and food sufficiency. A Rev Agron Sustain Dev 29(2009):113–133CrossRefGoogle Scholar
  36. Larin IV (1956) Lugovodstvo i pastbishchnoe khozyaistvo [Grassland husbandry]. Selkhozgiz, Leningrad and Moscow, RussiaGoogle Scholar
  37. Lioubimtseva E (2010) Global food security and grain production trends in Central Eurasia: Do models predict a new window of opportunity? Online source Accessed on 12 Feb 2013
  38. Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73(2009):963–977CrossRefGoogle Scholar
  39. Lipiec J, Arvidsson J, Murer E (2003) Review of modelling crop growth, movement of water and chemicals in relation to topsoil and subsoil compaction. Soil Tillage Res 73:15–29CrossRefGoogle Scholar
  40. Lobell DB, Burke MB, Tebaldi C, Mastrandea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610CrossRefGoogle Scholar
  41. Louwagie G, Gay SH, Burrell E (eds) (2009) Addressing soil degradation in EU agriculture: relevant processes, practices and policies report on the project ‘sustainable agriculture and soil conservation (SoCo)’ JRC scientific and technical reports. Online Accessed on 12 Feb 2010
  42. Mairura FS, Mugendi DN, Mwanje JI, Ramisch JJ, Mbugua PK, Chianu JN (2008) Scientific evaluation of smallholder land use knowledge in Central Kenya. Land Degrad Develop 19:77–90CrossRefGoogle Scholar
  43. Mueller L, Behrendt A, Schalitz G, Schindler U (2005) Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agric Water Manag 75(2):117–136CrossRefGoogle Scholar
  44. Mueller L, Schindler U, Behrendt A, Eulenstein F, Dannowski R (2007a) Das Muencheberger soil quality rating (SQR): ein einfaches Verfahren zur Bewertung der Eignung von Boeden als Farmland. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 110(2):515–516Google Scholar
  45. Mueller L, Schindler U, Behrendt A, Eulenstein F, Dannowski R, (2007b) The Muencheberg soil quality rating (SQR). Field manual for detecting and assessing properties and limitations of soils for cropping and grazing. Online Manuscript Accessed on 28 Nov 2012
  46. Mueller L, Drösler M, Schindler U, Behrendt A, Höper H, Eulenstein F, Kantelhardt J, Sommer M (2008) Implications of soil properties, vegetation and management intensity for peatland quality. In: After wise use—the future of peatlands : Proceedings of the 13th international peat congress; Tullamore, Ireland 8–13 June 2008: vol 1. International Peat Society, Jyväskylä, pp 616–619Google Scholar
  47. Mueller L, Kay BD, Hu C, Li Y, Schindler U, Behrendt A, Shepherd TG, Ball BC (2009a) Visual assessment of soil structure: evaluation of methodologies on sites in Canada, China and Germany: part I: comparing visual methods and linking them with soil physical data and grain yield of cereals. Soil Tillage Res 103(1):178–187CrossRefGoogle Scholar
  48. Mueller L, Schindler U, Behrendt A, Smolentseva E, Hennings V, Schad P, Hu C, Ball BC, Schlindwein S, Eulenstein F, Helming K, Schlindwein S (2009b) Bodenklassifikation und mittlere Ernteerträge in einigen Agrarlandschaften Eurasiens. Jahrestagung der DBG: Böden—eine endliche Ressource; Kommission VIII, September 2009, Bonn: 1–4; Deutsche Bodenkundliche Gesellschaft, Oldenburg. Accessed on 28 Nov 2012
  49. Mueller L, Schindler U, Mirschel W, Shepherd TG, Ball BC, Helming K, Rogasik J, Eulenstein F, Wiggering H (2010) Assessing the productivity function of soils. A Rev Agron Sustain Dev 30(3):601–614CrossRefGoogle Scholar
  50. Mueller L, Lipiec J, Kornecki TS, Gebhardt S (2011a) Trafficability and workability of soils. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. Springer Science+Business Media B.V, Dordrecht, pp 912–924Google Scholar
  51. Mueller L, Schindler U, Behrendt A, Fank J (2011b) Konzept zur Bewertung von Ertragspotentialen für Lysimeterstandorte. In: Bericht/14. Gumpensteiner Lysimetertagung : am 3. und 4. Mai 2011 am LFZ Raumberg-Gumpenstein. Lehr- und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein, Irdning, pp 137–142Google Scholar
  52. Mueller L, Schindler U, Shepherd TG, Ball BC, Smolentseva E, Hu C, Hennings V, Schad P, Rogasik J, Zeitz J, Schlindwein SL, Behrendt A, Helming K, Eulenstein F (2012) A framework for assessing agricultural soil quality on a global scale. Arch Agron Soil Sci 58(Supplement 1):S76–S82CrossRefGoogle Scholar
  53. Munkholm LJ, Schjonning P, Rasmussen KJ, Tanderup K (2003) Spatial and temporal effects of direct drilling on soil structure in the seedling environment. Soil Tillage Res 71:163–173CrossRefGoogle Scholar
  54. Nachtergaele F, Bruinsma J, Valbo-Jorgensen J, Bartley D (2011) The state of land and water resources for food and agriculture anticipated trends in the use of global land and water resources SOLAW background thematic report—TR01. Accessed on 24 Aug 2012
  55. Oyedele DJ, Aina PO (2006) Response of soil properties and maize yield to simulated erosion by artificial topsoil removal. Soil Plant 284:365–373Google Scholar
  56. Peerlkamp PK (1967) Visual estimation of soil structure. In: de Boodt M, de Leenherr DE, Frese H, Low AJ, Peerlkamp PK (eds) West European methods for soil structure determination, vol 2(11). State Faculty Agricultural Science, Ghent, pp 216–223Google Scholar
  57. Petrick M, Wandel J, Karsten K (2012) Rediscovering the Virgin Lands: agricultural investment and rural livelihoods in a Eurasian frontier area, World Development (in press). Accessed on 12 Jan 2013
  58. Postel S (2000) Redesigning irrigated agriculture, in state of the world 2000, vol 272, 1st edn. The Worldwatch Institute, New york, pp 39–58Google Scholar
  59. Rajabov T (2009) Ecological assessment of spatio-temporal changes of vegetation in response to piosphere effects in semi-arid rangelands of Uzbekistan. Online Source Accessed on 9 Mar 2013
  60. Rose L, Coners H, Leuschner C (2012) Effects of fertilization and cutting frequency on the water balance of a temperate grassland. Ecohydrology 5(1):64–75CrossRefGoogle Scholar
  61. Rothkegel W (1950) Geschichtliche Entwicklung der Bodenbonitierungen und Wesen und Bedeutung der deutschen Bodenschätzung. Stuttgart, Ulmer, p 147Google Scholar
  62. Sadras VO, O’Leary GJ, Roget DK (2004) Crop responses to compacted soil: capture and efficiency in the use of water and radiation. Field Crops Res 91(2–3):131–148Google Scholar
  63. Salako FK, Dada PO, Adejuyigbe CO, Adedire MO, Martins O, Akwuebu CA, Williams OE (2007) Soil strength and maize yield after topsoil removal and application of nutrient amendments on a gravelly Alfisol toposequence. Soil Tillage Res 94:21–35CrossRefGoogle Scholar
  64. Schillinger WF (2011) Practical lessons for successful long-term cropping systems experiments. Renewable Agric Food Syst 26:1–3CrossRefGoogle Scholar
  65. Schindelbeck RS, van Es HM, Abawi GS, Wolfe DW,Whitlow TL, Gugino BK, Idowu OJ, Moebius-Clune BN (2008) Comprehensive assessment of soil quality for landscape and urban management. Landscape Urban Plan 88 (2–4):73–80. doi: 10.1016/j.landurbplan.2008.08.006. Accessed on 12 Feb 2010
  66. Shepherd TG (2000) Visual soil assessment, volume 1. Field guide for cropping and pastoral grazing on flat to rolling country. Research, Palmerston North, p 84Google Scholar
  67. Shepherd TG (2009) Visual soil assessment, volume 1. Field guide for pastoral grazing and cropping on flat to rolling country, 2nd edn. Horizons Regional Council, Palmerston North, New Zealand, p 118Google Scholar
  68. Shepherd TG, Jessen M (2002) Land versatility for food and fibre production and urban use in the information area of the western Bay of Plenty subregion, for the SmartGrowth consortium. In: Graham Shepherd T, Jessen MR (eds) Landcare research contract report: LC0102/114Google Scholar
  69. Smolentseva EN, Rukhovic O, Lukin S, Suleimenov M, Saparov A, Balgabayev N, Pachikin K, Kussainova MD, Bekbaev U, Schindler U, Mueller L (2011) Ozenka katcestva i potenzial urozhainosti pocv v globalnom masshtabe. Pocvovedenie i Agrochimija, Almaty. 4:81–91Google Scholar
  70. Spoor G (2006) Alleviation of soil compaction: requirements, equipment and techniques. Soil Use Manag 22:113–122CrossRefGoogle Scholar
  71. Storie RE (1978) Storie index soil rating (Revised). Special publication 3203. Division of agricultural science. University of California, Berkeley, CA. Accessed on 12 Feb 2010
  72. Suttie JM, Reynolds SG, Batello C (eds) (2005) Grasslands of the world. Plant production and protection series No. 34, Food and Agriculture Organization of the United Nations, Rome. Accessed on 28 Nov 2012
  73. TERC (2005) Productivity of grassland in central Mongolia. Terrestrial Environment Research Center Tsukuba University. In: Proceedings of the 3rd international workshop on terrestrial change in Mongolia—joint workshop of AMPEX, IORGC and RAISE projects. Accessed on 2 Dec 2012
  74. Tjumenzev NF (1975) Susvtnost bonitirovki pocv na genetiko-proisvodstvennoij osnove. Isdatelstvo Nauka. Sibirskoje otdelenije, Novosibirsk, p 286Google Scholar
  75. Töpfer International (2012) Accessed on 24 Aug 2012
  76. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151(2012):53–59CrossRefGoogle Scholar
  77. Wessolek G, Asseng S (2006) Trade-off between wheat yield and drainage under current and climate change conditions in Northeast Germany. Europ J Agron 24(2006):333–342CrossRefGoogle Scholar
  78. White R, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems (PAGE): grassland ecosystems. World Resources Institute, Washington, DC, Nov 2000/paperback/ISBN 1-56973-461-5/. Accessed on 28 Nov 2012
  79. WRB (2006) World reference base for soil resources 2006, a framework for international classification, correlation and communication, FAO Rome, World soil resources reports 103, p 145Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lothar Mueller
    • 1
  • Uwe Schindler
    • 1
  • Bruce C. Ball
    • 2
  • Elena Smolentseva
    • 3
  • Victor G. Sychev
    • 4
  • T. Graham Shepherd
    • 5
  • Manzoor Qadir
    • 6
  • Katharina Helming
    • 1
  • Axel Behrendt
    • 7
  • Frank Eulenstein
    • 1
  1. 1.Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V.MuenchebergGermany
  2. 2.Crop and Soil Systems Research GroupSRUCEdinburghUK
  3. 3.Russian Academy of Sciences, Siberian BranchInstitute of Soil Science and Agrochemistry (ISSA)NovosibirskRussian Federation
  4. 4.Russian Academy of Agricultural SciencesPryanishnikov All-Russian Institute of Agrochemistry (VNIIA)MoscowRussian Federation
  5. 5.BioAgriNomics LtdPalmerston NorthNew Zealand
  6. 6.Institute for Water, Environment and Health (UNU-INWEH)United Nations UniversityHamiltonCanada
  7. 7.Leibniz Centre for Agricultural Landscape Research (ZALF) e. VPaulinenaueGermany

Personalised recommendations