Skip to main content

Modeling of Lipid Membranes and Lipoproteins

  • Chapter
  • First Online:
A Systems Biology Approach to Study Metabolic Syndrome

Abstract

Metabolic states that precede diseases such as the Metabolic Syndrome are associated with abnormal conditions, such as dyslipidemia, reflected in circulation as elevated levels of triglycerides and low levels of high-density lipoproteins. Yet, the underlying molecular phenomena associated with these conditions are not understood. This is quite unfortunate, since understanding the interplay of lipids and proteins in the context of normal and abnormal metabolite profiles would promote development of novel ways to guide dysfunctional metabolic profiles towards normal ones. Here we discuss how molecular simulations can be used to shed light on these issues by modelling the structure, dynamics, and function of biological systems comprised of lipids and proteins. By considering recent simulation studies of lipid membranes, membrane proteins, and lipoproteins we highlight the added value brought out by simulations in unravelling how nano-scale phenomena take place in complex lipid-protein systems. The examples shown here also demonstrate the significant added value of bridging molecular simulations with experiments, and in a biomedical context with clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamian L, Naveed H, Liang J (2011) Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Biochim Biophys Acta 1808:1092–1102

    Google Scholar 

  • Aittoniemi J, Niemelä P, Hyvönen MT, Karttunen M, Vattulainen I (2007) Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine. Biophys J 92:1125–1137

    Article  PubMed  CAS  Google Scholar 

  • Ayton GS, Voth GA (2009) Systematic multiscale simulation of membrane protein systems. Curr Opin Struct Biol 19:138–144

    Article  PubMed  CAS  Google Scholar 

  • Cantor RS (1997) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. BioChemistry 36:2339–2344

    Article  PubMed  CAS  Google Scholar 

  • Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nature Struct Mol Biol 15:675–683

    Article  CAS  Google Scholar 

  • Contreras FX, Ernst AM, Haberkant P, Björlholm P, Lindahl E, Gönen B, Tischer C, Elofsson A, Heijne G von, Thiele C, Pepperkok R, Wieland F, BrĂĽgger B (2012) Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481:525–529

    Article  PubMed  CAS  Google Scholar 

  • Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, LĂĽhrmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA 103:11440–11445

    Article  PubMed  CAS  Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic Press, USA

    Google Scholar 

  • Fuller N, Rand RP (2001) The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J 81:243–254

    Article  PubMed  CAS  Google Scholar 

  • User Manual GROMACS (2010) Web-site: www.gromacs.org/Documentation/Manual/. Version 4.5.4

  • Gunsteren WF van, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glattli A, Hunenberger PH, Kastenholz MA, Ostenbrink C, Schenk M, Trzesniak D, Vegt NFA van der, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45:4064–4092

    Google Scholar 

  • Hall A, Rog T, Karttunen M, Vattulainen I (2010) Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide. J Phys Chem B 114:7797–7807

    Article  PubMed  CAS  Google Scholar 

  • Hall A, Rog T, Vattulainen I (2011) Effect of galactosylceramide on dynamics of cholesterol-rich lipid membranes. J Phys Chem B 115:14424–14434

    Article  PubMed  CAS  Google Scholar 

  • Hess B, Kutzner C, Spoel D van der, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Jensen MO, Mouritsen OG (2004) Lipids do influence protein function—the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666:205–226

    Google Scholar 

  • Kaiser HJ, Orlowski A, Rog T, Nyholm TKM, Chai W, Feizi T, Lingwood D, Vattulainen I, Simons K (2011) Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc Natl Acad Sci 108:16628–16633

    Article  PubMed  CAS  Google Scholar 

  • Kamerlin SCL, Vicatos S, Dryga A, Warshel A (2011) Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Ann Rev Phys Chem 62:41–64

    Article  CAS  Google Scholar 

  • Koivuniemi A, Vattulainen I (2012) Revealing structural and dynamical properties of high density lipoproteins through molecular simulations. Soft Matter 8:1262–1267

    Article  CAS  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane†organizing principle. Science 327:46–50

    Google Scholar 

  • Lingwood D, Binnington B, Rog T, Vattulainen I, Grzybek M, Coskul U, Lingwood CA, Simons K (2011) Cholesterol modulates glycolipid conformation and receptor activity. Nature Chem Biol 7:260–262

    Article  CAS  Google Scholar 

  • Lopez CA, Rzepiela A, Vries AH de, Dijkhuizen L, Huenenberger PH, Marrink SJ (2009) The Martini coarse grained force field: extension to carbohydrates. J Chem Theory Comput 5:3195–3210

    Article  CAS  Google Scholar 

  • Louhivuori M, Risselada HJ, Giessen E van der, Marrink SJ (2010) Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci USA 107:19856–19860

    Article  PubMed  CAS  Google Scholar 

  • Lundbak JA, Collingwood SA, Ingulfsson HI, Kapoor R, Andersen OS (2010) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J Royal Soc Interf 7:373–395

    Article  Google Scholar 

  • Marrink SJ, Vries AH de, Mark AE (2004) Coarse grained model for semi-quantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, Vries AH de (2007) The MARTINI forcefield: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  • Marsh D (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim Biophys Acta 1778:1545–1575

    Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  • Mouritsen OG (2005) Life—as a matter of fat. Springer, Heidelberg

    Google Scholar 

  • Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: Biological and soft matter. Phys Chem Chem Phys 11:1869–1892

    Article  PubMed  CAS  Google Scholar 

  • Murtola T, Vuorela TA, Hyvonen MT, Marrink SJ, Karttunen M, Vattulainen I (2011) Low density lipoprotein: structure, dynamics, and interactions of apoB-100 with lipids. Soft Matter 7:8135–8141

    Article  CAS  Google Scholar 

  • Niemelä PS, Ollila S, Hyvönen MT, Karttunen M, Vattulainen I (2007) Assessing the nature of lipid raft membranes. PLoS Comput Biol 3:304–312

    Article  Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc Natl Acad Sci USA 97:13561–13566

    Article  PubMed  CAS  Google Scholar 

  • Ollila OHS, Vattulainen I (2010) Lateral pressure profiles in lipid membranes: dependence on molecular composition. In: molecular simulations and biomembranes: for biophysics to function (Royal Society of Chemistry), pp 26–55

    Google Scholar 

  • Ollila S, Hyvönen MT, Vattulainen I (2007) Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. J Phys Chem B 111:3139–3150

    Article  PubMed  CAS  Google Scholar 

  • Ollila OHS, Risselada HJ, Louhivuori M, Lindahl E, Vattulainen I, Marrink SJ (2009) 3D pressure field in lipid membranes and membrane-protein complexes. Phys Rev Lett 102:078101

    Article  PubMed  Google Scholar 

  • Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18

    Google Scholar 

  • Parton DL, Klingelhoefer JW, Sansom MSP (2011) Application of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys J 101:691–699

    Article  PubMed  CAS  Google Scholar 

  • Pietiläinen K, Rog T, Seppänen-Laakso T, Virtue S, Gopalacharyulu P, Tang J, Rodriguez-Cuenca S, Maciejewski A, Naukkarinen J, Ruskeepää AL, Niemelä P, Yetukuri L, Tan CY, Velagapudi V, Castillo S, Nygren H, Hyotylainen T, Rissanen A, Kaprio J, Yki-Järvinen H, Vattulainen I, Vidal-Plug A, Oresic M (2011) Association of lipidome remodelling in the adipocyte membrane with acquired obesity in humans. PLoS Biology 9:e1000623

    Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  • Ramadurai S, Holt A, Schafer LV, Krasnikov VV, Rijkers DTS, Marrink SJ, Killian JA, Poolman B (2010) Influence of hydrophobic mismatch and aminoacid composition on the lateral diffusion of transmembrane peptides. Biophys J 99:1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Risselada HJ, Marrink SJ (2008) The molecular face of lipid rafts in model membranes. Proc Natl Acad Sci USA 105:17367–17372

    Article  PubMed  CAS  Google Scholar 

  • Rog T, Vattulainen I, Karttunen M (2005) Modeling glycolipids: take one. Cell Mol Biol Lett 10:625–630

    PubMed  CAS  Google Scholar 

  • Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a0004697

    Google Scholar 

  • Terama E, Ollila OHS, Salonen E, Rowat A, Trandum C, Westh P, Patra M, Karttunen M, Vattulainen I (2008) Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. J Phys Chem B 112:4131–4139

    Article  PubMed  CAS  Google Scholar 

  • Vattulainen I, Rog T (2011) Lipid simulations: a perspective on lipids in action. Cold Spring Harb Perspect Biol. 3:a004655

    Google Scholar 

  • Yanting W, Noid WG, Liu P, Voth GA (2009) Effective force coarse-graining. Phys Chem Chem Phys 11:2002–2015

    Article  Google Scholar 

  • Yeagle PL (2005) Structure of biological membranes. CRC Press, USA

    Google Scholar 

  • Yetukuri L, Soderlund S, Koivuniemi A, Seppanen-Laakso T, Niemela PS, Hyvonen M, Taskinen MR, Vattulainen I, Jauhiainen M, Oresic M (2010) Composition and lipid spatial distribution of HDL particles in subjects with low and high HDL-cholesterol. J Lipid Res 51:2341–2351

    Article  PubMed  CAS  Google Scholar 

  • Yetukuri L, Huopaniemi I, Koivuniemi A, Maranghi M, Hiukka A, Nygren H, Kaski S, Taskinen MR, Vattulainen I, Jauhiainen M, Oresic M (2011) High density lipoprotein structural changes and drug response in lipidomic profiles following the long-term fenofibrate therapy in the FIELD substudy. PLoS One 6:e23589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Academy of Finland, the European Research Council (Advanced Grant CROWDED-PRO-LIPIDS), and the EU FP7 project ETHERPATHS are thanked for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilpo Vattulainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koivuniemi, A., Vattulainen, I. (2014). Modeling of Lipid Membranes and Lipoproteins. In: Orešič, M., Vidal-Puig, A. (eds) A Systems Biology Approach to Study Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-01008-3_15

Download citation

Publish with us

Policies and ethics