Advertisement

Metabolomics in the Systems-Level Study of the Metabolic Syndrome

  • Tuulia HyötyläinenEmail author
Chapter

Abstract

Metabolic syndrome (MetS) is a combination of medical disorders, including abnormalities in insulin, glucose and lipid metabolism, hypertension and abdominal obesity, causing several metabolic complications. Metabolomics has been increasingly employed for investigating obesity and obesity-related diseases in recent years. Because metabolome is dependent on the physiological, environmental, and genetic status of an organism, metabolomics can help to understand the biochemical networks that underlie metabolic homeostasis in obesity. The ongoing development of mass spectrometry (MS) and chromatography has enabled more comprehensive coverage of the metabolome. Many obesity-related metabolites have already been identified by metabolomics and demonstrated to be disturbed significantly in both animal models and in humans. This chapter describes the methodology used in metabolomics and summarizes the current knowledge about the effect of obesity and MetS on metabolic pathways.

Keywords

Metabolomics Chromatography Mass spectrometry NMR Metabolic syndrome 

References

  1. Aggio RB, Ruggiero K, Granato Villas-Bôas S (2010) Pathway activity profiling (PAPi): from the metabolite profile to the metabolic pathway activity. Bioinformatics 26:2969–2976PubMedCrossRefGoogle Scholar
  2. Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD (2010a) Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Anal Chem 29:111–119CrossRefGoogle Scholar
  3. Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD (2010b) Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem 29:120–127Google Scholar
  4. Aranibar N, Ott KH, Roongta V et al (2006) Metabolomic analysis using optimized NMR and statistical methods. Anal Biochem 355:62–70PubMedCrossRefGoogle Scholar
  5. Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157:414–421PubMedCrossRefGoogle Scholar
  6. Barter PJ, Nestel PJ (1973) Precursors of plasma triglyceride fatty acids in obesity. Metabolism 22:779–783PubMedCrossRefGoogle Scholar
  7. Caesar R, Manieri M, Kelder T, Boekschoten M, Evelo C, Muller M, Kooistra T, Cinti S, Kleemann R, Drevon CA (2010) A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences. PloS ONE 5:e11525PubMedCrossRefGoogle Scholar
  8. Carlsson C, Borg LA, Welsh N (1999) Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 140:3422–3428PubMedCrossRefGoogle Scholar
  9. Castillo S, Mattila I, Miettinen J, Orešič M, Hyötyläinen T (2011) Data analysis tool for comprehensive two-dimensional gas chromatography-time of flight mass spectrometry, Anal Chem 83:3058–3067Google Scholar
  10. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523PubMedCrossRefGoogle Scholar
  11. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78PubMedCrossRefGoogle Scholar
  12. Duarte NC, Becker SA, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104:1777–1782PubMedCrossRefGoogle Scholar
  13. Duggan GE, Hittel DS, Hughey CC, Weljie A, Vogel HJ, Shearer J (2011) “Differentiating short- and long-term effects of diet in the obese mouse using (1) H-nuclear magnetic resonance metabolomics”. Diabetes Obes Metab 13:859–862PubMedCrossRefGoogle Scholar
  14. Engelmann B (2004) Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans 32:147–150PubMedCrossRefGoogle Scholar
  15. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622PubMedCrossRefGoogle Scholar
  16. Evans JL, Goldfine ID, Maddux, BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 52:1–8 Google Scholar
  17. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811:637–47PubMedCrossRefGoogle Scholar
  18. Felig P, Wahren J (1971) Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man. The J Clin Inv 50:1702–1711CrossRefGoogle Scholar
  19. Felig P, Wahren J, Hendler R, Brundin T (1974) Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 53:582–590PubMedCrossRefGoogle Scholar
  20. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH (2010) Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PloSOne 5:e15234CrossRefGoogle Scholar
  21. Fridlyand LE, Philipson LH (2006) Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab 8:136–145PubMedCrossRefGoogle Scholar
  22. Gall WE, Beebe K, Lawton KA, Adam K-P, Mitchell MW, Nakhle PJ, Ryals JA, Milburn MV, Nannipieri M, Camastra S, Natali A, Ferrannini E (2010) Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 5:e10883PubMedCrossRefGoogle Scholar
  23. Green R, Kwok S, Durrington PN (2002) Preventing cardiovascular disease in hypertension: effects of lowering blood pressure and cholesterol. QJM 95:821–826PubMedCrossRefGoogle Scholar
  24. Gronwald W, Klein MS, Kaspar H et al (2008) Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem 80:9288–9297PubMedCrossRefGoogle Scholar
  25. Halliwell B (1995) Antioxidant characterization: methodology and mechanism. Biochem Pharmacol 49:1341–1348PubMedCrossRefGoogle Scholar
  26. Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381–402PubMedCrossRefGoogle Scholar
  27. Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Tr Microbiol 19:349–359. doi:10.1016/j.tim.2011.05.006CrossRefGoogle Scholar
  28. Horai H, Arita M, Kanaya S et al (2010) T. metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. J Mass Spectrom 45:703–714PubMedCrossRefGoogle Scholar
  29. Houstis N, Rosen ED (2006) Lander, ES reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948PubMedCrossRefGoogle Scholar
  30. Hummel J, Strehmel N, Selbig J, Walther D, Kopka J (2010) Metabolomics 6:322–333Google Scholar
  31. Hyötyläinen T (2010) Analytical methodologies utilized in the search of biomarkers for chronic diseases. Bioanalysis 2/5:919–923CrossRefGoogle Scholar
  32. Hyötyläinen T (2012) Novel methodologies in metabolic profiling with a focus on molecular diagnostic applications. Expert Rev Mol Diagn 12:527–538PubMedCrossRefGoogle Scholar
  33. Hyötyläinen T, Mattila I, Wiedmer S, Koivuniemi A, Taskinen M-R, Yki-Järvinen H, Orešič M (2012) Metabolomic analysis of polar metabolites in lipoprotein fractions identifies lipoprotein-specific metabolic profiles and their association with insulin resistance. Mol Biosyst 8:2559–2565Google Scholar
  34. Iozzo P, Bucci M, Roivainen A, Någren K, Järvisalo MJ, Kiss J, Guiducci L, Fielding B, Naum AG, Borra R, Virtanen K, Savunen T, Salvadori PA, Ferrannini E, Knuuti J, Nuutila P (2010) Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139:846–56PubMedCrossRefGoogle Scholar
  35. Jansson A, Larsson A, Smith U, Lonnroth P (1994) Lactate release from the subcutaneous tissue in lean and obese men. J Clin Invest 93:240–246PubMedCrossRefGoogle Scholar
  36. Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6:401PubMedCrossRefGoogle Scholar
  37. Kankainen M, Gopalacharyulu P, Holm L, Orešič M (2011) MPEA—metabolite pathway enrichment analysis. Bioinformatics 27:1878–1879PubMedCrossRefGoogle Scholar
  38. Katajamaa M, Oresic M (2007) Data processing for mass spectrometry- based metabolomics. J Chromatogr A 1158:318–328PubMedCrossRefGoogle Scholar
  39. Kind T, Wohlgemuth G, Lee do Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048PubMedCrossRefGoogle Scholar
  40. Kissebah AH, Alfarsi S, Adams PW, Wynn V (1976) The metabolic fate of plasma lipoproteins in normal subjects and in patients with insulin resistance and endogenous hypertriglyceridaemia. Diabetologia 12:501–509PubMedCrossRefGoogle Scholar
  41. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the golm metabolome database. Bioinformatics 21:1635–1638. doi:10.1093/bioinformatics/bti236PubMedCrossRefGoogle Scholar
  42. Kotronen A, Seppanen-Laakso T, Westerbacka J, Kiviluoto T, Arola J, Ruskeepaa AL, Oresic M, Yki-Jarvinen H (2009) Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58:203–8PubMedCrossRefGoogle Scholar
  43. Kotronen A, Velagapudi VR, Yetukuri L, Westerbacka J, Bergholm R, Ekroos K, Makkonen J, Taskinen MR, Oresic M, Yki-Jarvinen H (2009) Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia 52:684–90PubMedCrossRefGoogle Scholar
  44. Kotronen A, Yki-Järvinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:27–38PubMedCrossRefGoogle Scholar
  45. Kumari S, Stevens D, Kind T, Denkert C, Fiehn O (2011) Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry, applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Anal Chem 83(15):5895–5902PubMedCrossRefGoogle Scholar
  46. Kusunoki J, Kanatani A (2006) Moller DE modulation of fatty acid metabolism as a potential approach to the treatment of obesity and the metabolic syndrome. Endocrine 29:91–100PubMedCrossRefGoogle Scholar
  47. Kyriakis JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271:24313–24316PubMedCrossRefGoogle Scholar
  48. Laaksonen DE, Lakka TA, Lakka HM et al (2002) Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men. Diabetic Medicine 19:456–464PubMedCrossRefGoogle Scholar
  49. Lanpher B, Brunetti-Pierri N, Lee B (2006) Inborn errors of metabolism: the flux from mendelian to complex diseases. Nat Rev Genet 7:449–460PubMedCrossRefGoogle Scholar
  50. Lee JK, Williams PD, Cheon S (2008) Data mining in genomics. Clin Lab Med 28:145–66PubMedCrossRefGoogle Scholar
  51. Li H, Xie Z, Lin J et al (2008) Transcriptomic and metabonomic profiling of obesity-prone and obesity-resistant rats under high fat diet. J Prot Res 7:4775–4783CrossRefGoogle Scholar
  52. Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G (2009) Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal Chim Acta 633:257–62PubMedCrossRefGoogle Scholar
  53. Maassen JA, Romijn JA, Heine RJ (2007) Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus. Diabetologia 50:2036–2041PubMedCrossRefGoogle Scholar
  54. Malet-Martinoa M, Holzgrabeb U (2011) NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal 55:1–15CrossRefGoogle Scholar
  55. Moco S, Bino RJ, De Vos RCH, Vervoort J (2007) Metabolomics technologies and metabolite identification. Trends Anal Chem 26:855–866CrossRefGoogle Scholar
  56. Neumann S, Böcker S (2010) Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Anal Bioanal Chem 398:2779–2788PubMedCrossRefGoogle Scholar
  57. Newgard CB, An J, Bain JR et al (2009) “A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance.” Cell Metabolism 9:311–326PubMedCrossRefGoogle Scholar
  58. Nygren H, Seppänen-Laakso T, Castillo S, Hyötyläinen T, Orešič M (2011) LC/MS-based lipidomics for studies of body fluids and tissues. Methods Mol Biol 708:247–257Google Scholar
  59. Orešič M, Hänninen V, Vidal-Puig A (2008) Lipidomics: a new window to biomedical frontiers. Trends Biotechnol 26:647–652PubMedCrossRefGoogle Scholar
  60. Orvall M, Berglund L, Salminen I, Lithell H, Aro A, Vessby B (1996) The serum cholesterol ester fatty acid composition but not the serum concentration of alpha tocopherol predicts the development of myocardial infarction in 50-year-old men: 19 years follow-up. Atherosclerosis 127:65–71CrossRefGoogle Scholar
  61. Paolisso G, Giugliano D (1996) Oxidative stress and insulin action: is there a relationship? Diabetologia 3(9):357–363CrossRefGoogle Scholar
  62. Paolisso G, Giugliano D, Pizza G, Gambardella A, Teasauro P, Varricchio M, D´Onofrio F (1992) Glutathione infusion potentiates glucose-induced insulin secretion in aged patients with impaired glucose tolerance. Diabetes Care 15:1–7Google Scholar
  63. Paolisso G, Gambardella A, Tagliamonte MR, Saccomanno F, Salvatore T, Gualdiero P, D’Onofrio MV, Howard BV (1996) Does free fatty acid infusion impair insulin action also through an increase in oxidative stress? J Clin Endocrinol Metab 81:4244–4248PubMedCrossRefGoogle Scholar
  64. Pietiläinen K, Róg T, Seppänen-Laakso T, Virtue S, Gopalacharyulu P, Tang J, Rodriguez-Cuenca S, Maciejewski A, Naukkarinen J, Rissanen A, Ruskeepää A-L, Niemelä P, Yetukuri L, Yew Tan C, Velagapudi V, Castillo S, Nygren H, Hyötyläinen T, Kaprio J, Yki-Järvinen H, Vattulainen I, Vidal-Puig A, Orešič M (2011) Remodeling of adipose tissue lipidome as adaptation to acquired obesity: benefits and costs. PLoS Biol 9:e1000623PubMedCrossRefGoogle Scholar
  65. Pól J, Vidová V, Hyötyläinen T, Volný M, Novák P, Strohalm M, Kostiainen R, Havlàček V, Wiedmer SK, Holopainen JM (2011) Spatial distribution of glycerophospholipids in R. the ocular lens. PLoS ONE 6:e19441PubMedCrossRefGoogle Scholar
  66. Psychogios N, Hau DD, Peng J, Chi Guo A, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huan P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS (2011) Plos One 6:e16957Google Scholar
  67. Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & Dev 21:1443–1455PubMedCrossRefGoogle Scholar
  68. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789PubMedCrossRefGoogle Scholar
  69. Rao MS, Reddy JK (2001) Peroxisomal β-oxidation and steatohepatitis. Semin Liver Dis 21:43–55PubMedCrossRefGoogle Scholar
  70. Reaven GM, Lerner RL, Stern MP, Farquhar JW (1967) Role of insulin in endogenous hypertriglyceridemia. J Clin Invest 46:1756–1767PubMedCrossRefGoogle Scholar
  71. Rondinone CM (2006) Adipocyte-derived hormones, cytokines, and mediators. Endocrine 29:81–90PubMedCrossRefGoogle Scholar
  72. Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212PubMedCrossRefGoogle Scholar
  73. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–92PubMedCrossRefGoogle Scholar
  74. Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507–520PubMedCrossRefGoogle Scholar
  75. Schwudke D, Liebisch G, Herzog R, Schmitz G, Shevchenko A (2007) Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol 433:175–91PubMedCrossRefGoogle Scholar
  76. Schymanski EL, Meringer M, Brack W (2009) Matching structures to mass spectra using fragmentation patterns: are the results as good as they look? Anal Chem 81:3608–3617PubMedCrossRefGoogle Scholar
  77. Serkova NJ, Jackman M, Brown JL et al (2006) Metabolic profiling of livers and blood from obese Zucker rats. J Hepatol 44:956–962PubMedCrossRefGoogle Scholar
  78. Shlomi T, Cabili MN, Ruppin E (2009) Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol 5:263PubMedCrossRefGoogle Scholar
  79. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176Google Scholar
  80. Smith CA, O´Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751PubMedCrossRefGoogle Scholar
  81. Sumner LW, Urbanczyk-Wochniak E, Broecklin CD (2008) Metabolomics data analysis, visualization, and integration. Methods Mol Biol 406:409–436Google Scholar
  82. Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810PubMedCrossRefGoogle Scholar
  83. Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16PubMedCrossRefGoogle Scholar
  84. Trawick JD, Schilling CH (2006) Use of constraint-based modeling for the prediction and validation of antimicrobial targets. Biochem Pharmacol 71:1026–1035PubMedCrossRefGoogle Scholar
  85. Trayhurn P, Bing C (2006) Appetite and energy balance signals from adipocytes. Philos Trans R Soc Lond B Biol Sc 361:1237–1249CrossRefGoogle Scholar
  86. Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54:2674–2684PubMedCrossRefGoogle Scholar
  87. Trim PJ, Atkinson SJ, Princivalle AP, Marshall PS, West A, Clench MR (2008) Matrix-assisted laser desorption/ionisation mass spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis. Rapid Commun Mass Spectrom 22:1503–1509PubMedCrossRefGoogle Scholar
  88. Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JBL, Nieuwdorp M (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613PubMedCrossRefGoogle Scholar
  89. Weber RJ, Southam AD, Sommer U, Viant MR (2011) Characterization of Isotopic Abundance Measurements in high resolution FT-ICR and orbitrap mass spectra for improved confidence of metabolite identification. Anal Chem 83:3737–3743PubMedCrossRefGoogle Scholar
  90. Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH (2003) Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 78:91–98PubMedGoogle Scholar
  91. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453PubMedCrossRefGoogle Scholar
  92. Westerbacka J, Kotronen A, Fielding BA, Wahren J, Hodson L, Perttila J, Seppanen-Laakso T, Suortti T, Arola J, Hultcrantz R, Castillo S, Olkkonen VM, Frayn KN, Oresic M, Yki-Jarvinen H (2010) Splanchnic balance of free fatty acids, endocannabinoids and lipids in subjects with NAFLD. Gastroenterology doi:10.1053/j.gastro.2010.06.064Google Scholar
  93. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. PNAS 106:3698–3703PubMedCrossRefGoogle Scholar
  94. Wojtczak L, Schonfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183:41–57PubMedCrossRefGoogle Scholar
  95. Wolf S, Schmidt S, Muller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinf 11:148CrossRefGoogle Scholar
  96. Wopereis S, Radonjic M, Rubingh C, Erk Mv, Smilde A, Duyvenvoorde Wv, Cnubben N, Kooistra T, Ommen Bv, Kleemann R (2012) Identification of prognostic and diagnostic biomarkers of glucose intolerance in ApoE3Leiden mice. Physiol Genomics 1(44):293–304Google Scholar
  97. Wu C, Ifa DR, Manicke NE, Cooks RG (2009) Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray Ionization. Anal Chem 81:7618–7624PubMedCrossRefGoogle Scholar
  98. Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38:W71–W77PubMedCrossRefGoogle Scholar
  99. Xie B, Waters MJ, Schirra H (2012) Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechn 2012:805683Google Scholar
  100. Xu Y, Heilier JF, Madalinski G, Genin E, Ezan E, Tabet JC, Junot C (2010) Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-Orbitrap mass spectrometer for further metabolomics database building. Anal Chem 82:5490–5501PubMedCrossRefGoogle Scholar
  101. Yang LV, Radu CG, Wang L, Riedinger M, Witte ON (2005) Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood 105:1127–1134PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.VTT Technical Research Centre of FinlandEspooFinland

Personalised recommendations