Skip to main content

Metabolomics in the Systems-Level Study of the Metabolic Syndrome

  • Chapter
  • First Online:
A Systems Biology Approach to Study Metabolic Syndrome

Abstract

Metabolic syndrome (MetS) is a combination of medical disorders, including abnormalities in insulin, glucose and lipid metabolism, hypertension and abdominal obesity, causing several metabolic complications. Metabolomics has been increasingly employed for investigating obesity and obesity-related diseases in recent years. Because metabolome is dependent on the physiological, environmental, and genetic status of an organism, metabolomics can help to understand the biochemical networks that underlie metabolic homeostasis in obesity. The ongoing development of mass spectrometry (MS) and chromatography has enabled more comprehensive coverage of the metabolome. Many obesity-related metabolites have already been identified by metabolomics and demonstrated to be disturbed significantly in both animal models and in humans. This chapter describes the methodology used in metabolomics and summarizes the current knowledge about the effect of obesity and MetS on metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggio RB, Ruggiero K, Granato Villas-Bôas S (2010) Pathway activity profiling (PAPi): from the metabolite profile to the metabolic pathway activity. Bioinformatics 26:2969–2976

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD (2010a) Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Anal Chem 29:111–119

    Article  Google Scholar 

  • Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD (2010b) Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem 29:120–127

    Google Scholar 

  • Aranibar N, Ott KH, Roongta V et al (2006) Metabolomic analysis using optimized NMR and statistical methods. Anal Biochem 355:62–70

    Article  PubMed  CAS  Google Scholar 

  • Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157:414–421

    Article  PubMed  CAS  Google Scholar 

  • Barter PJ, Nestel PJ (1973) Precursors of plasma triglyceride fatty acids in obesity. Metabolism 22:779–783

    Article  PubMed  CAS  Google Scholar 

  • Caesar R, Manieri M, Kelder T, Boekschoten M, Evelo C, Muller M, Kooistra T, Cinti S, Kleemann R, Drevon CA (2010) A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences. PloS ONE 5:e11525

    Article  PubMed  Google Scholar 

  • Carlsson C, Borg LA, Welsh N (1999) Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 140:3422–3428

    Article  PubMed  CAS  Google Scholar 

  • Castillo S, Mattila I, Miettinen J, Orešič M, Hyötyläinen T (2011) Data analysis tool for comprehensive two-dimensional gas chromatography-time of flight mass spectrometry, Anal Chem 83:3058–3067

    Google Scholar 

  • Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523

    Article  PubMed  CAS  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  PubMed  CAS  Google Scholar 

  • Duarte NC, Becker SA, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104:1777–1782

    Article  PubMed  CAS  Google Scholar 

  • Duggan GE, Hittel DS, Hughey CC, Weljie A, Vogel HJ, Shearer J (2011) “Differentiating short- and long-term effects of diet in the obese mouse using (1) H-nuclear magnetic resonance metabolomics”. Diabetes Obes Metab 13:859–862

    Article  PubMed  CAS  Google Scholar 

  • Engelmann B (2004) Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans 32:147–150

    Article  PubMed  CAS  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622

    Article  PubMed  CAS  Google Scholar 

  • Evans JL, Goldfine ID, Maddux, BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 52:1–8

    Google Scholar 

  • Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811:637–47

    Article  PubMed  CAS  Google Scholar 

  • Felig P, Wahren J (1971) Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man. The J Clin Inv 50:1702–1711

    Article  CAS  Google Scholar 

  • Felig P, Wahren J, Hendler R, Brundin T (1974) Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 53:582–590

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH (2010) Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PloSOne 5:e15234

    Article  Google Scholar 

  • Fridlyand LE, Philipson LH (2006) Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab 8:136–145

    Article  PubMed  CAS  Google Scholar 

  • Gall WE, Beebe K, Lawton KA, Adam K-P, Mitchell MW, Nakhle PJ, Ryals JA, Milburn MV, Nannipieri M, Camastra S, Natali A, Ferrannini E (2010) Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 5:e10883

    Article  PubMed  Google Scholar 

  • Green R, Kwok S, Durrington PN (2002) Preventing cardiovascular disease in hypertension: effects of lowering blood pressure and cholesterol. QJM 95:821–826

    Article  PubMed  CAS  Google Scholar 

  • Gronwald W, Klein MS, Kaspar H et al (2008) Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem 80:9288–9297

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1995) Antioxidant characterization: methodology and mechanism. Biochem Pharmacol 49:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381–402

    Article  PubMed  CAS  Google Scholar 

  • Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Tr Microbiol 19:349–359. doi:10.1016/j.tim.2011.05.006

    Article  CAS  Google Scholar 

  • Horai H, Arita M, Kanaya S et al (2010) T. metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. J Mass Spectrom 45:703–714

    Article  PubMed  CAS  Google Scholar 

  • Houstis N, Rosen ED (2006) Lander, ES reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    Article  PubMed  CAS  Google Scholar 

  • Hummel J, Strehmel N, Selbig J, Walther D, Kopka J (2010) Metabolomics 6:322–333

    Google Scholar 

  • Hyötyläinen T (2010) Analytical methodologies utilized in the search of biomarkers for chronic diseases. Bioanalysis 2/5:919–923

    Article  Google Scholar 

  • Hyötyläinen T (2012) Novel methodologies in metabolic profiling with a focus on molecular diagnostic applications. Expert Rev Mol Diagn 12:527–538

    Article  PubMed  Google Scholar 

  • Hyötyläinen T, Mattila I, Wiedmer S, Koivuniemi A, Taskinen M-R, Yki-Järvinen H, Orešič M (2012) Metabolomic analysis of polar metabolites in lipoprotein fractions identifies lipoprotein-specific metabolic profiles and their association with insulin resistance. Mol Biosyst 8:2559–2565

    Google Scholar 

  • Iozzo P, Bucci M, Roivainen A, Någren K, Järvisalo MJ, Kiss J, Guiducci L, Fielding B, Naum AG, Borra R, Virtanen K, Savunen T, Salvadori PA, Ferrannini E, Knuuti J, Nuutila P (2010) Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139:846–56

    Article  PubMed  CAS  Google Scholar 

  • Jansson A, Larsson A, Smith U, Lonnroth P (1994) Lactate release from the subcutaneous tissue in lean and obese men. J Clin Invest 93:240–246

    Article  PubMed  CAS  Google Scholar 

  • Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6:401

    Article  PubMed  Google Scholar 

  • Kankainen M, Gopalacharyulu P, Holm L, Orešič M (2011) MPEA—metabolite pathway enrichment analysis. Bioinformatics 27:1878–1879

    Article  PubMed  CAS  Google Scholar 

  • Katajamaa M, Oresic M (2007) Data processing for mass spectrometry- based metabolomics. J Chromatogr A 1158:318–328

    Article  PubMed  CAS  Google Scholar 

  • Kind T, Wohlgemuth G, Lee do Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  PubMed  CAS  Google Scholar 

  • Kissebah AH, Alfarsi S, Adams PW, Wynn V (1976) The metabolic fate of plasma lipoproteins in normal subjects and in patients with insulin resistance and endogenous hypertriglyceridaemia. Diabetologia 12:501–509

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the golm metabolome database. Bioinformatics 21:1635–1638. doi:10.1093/bioinformatics/bti236

    Article  PubMed  CAS  Google Scholar 

  • Kotronen A, Seppanen-Laakso T, Westerbacka J, Kiviluoto T, Arola J, Ruskeepaa AL, Oresic M, Yki-Jarvinen H (2009) Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58:203–8

    Article  PubMed  CAS  Google Scholar 

  • Kotronen A, Velagapudi VR, Yetukuri L, Westerbacka J, Bergholm R, Ekroos K, Makkonen J, Taskinen MR, Oresic M, Yki-Jarvinen H (2009) Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia 52:684–90

    Article  PubMed  CAS  Google Scholar 

  • Kotronen A, Yki-Järvinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:27–38

    Article  PubMed  CAS  Google Scholar 

  • Kumari S, Stevens D, Kind T, Denkert C, Fiehn O (2011) Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry, applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Anal Chem 83(15):5895–5902

    Article  PubMed  CAS  Google Scholar 

  • Kusunoki J, Kanatani A (2006) Moller DE modulation of fatty acid metabolism as a potential approach to the treatment of obesity and the metabolic syndrome. Endocrine 29:91–100

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271:24313–24316

    Article  PubMed  CAS  Google Scholar 

  • Laaksonen DE, Lakka TA, Lakka HM et al (2002) Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men. Diabetic Medicine 19:456–464

    Article  PubMed  CAS  Google Scholar 

  • Lanpher B, Brunetti-Pierri N, Lee B (2006) Inborn errors of metabolism: the flux from mendelian to complex diseases. Nat Rev Genet 7:449–460

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Williams PD, Cheon S (2008) Data mining in genomics. Clin Lab Med 28:145–66

    Article  PubMed  Google Scholar 

  • Li H, Xie Z, Lin J et al (2008) Transcriptomic and metabonomic profiling of obesity-prone and obesity-resistant rats under high fat diet. J Prot Res 7:4775–4783

    Article  CAS  Google Scholar 

  • Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G (2009) Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal Chim Acta 633:257–62

    Article  PubMed  CAS  Google Scholar 

  • Maassen JA, Romijn JA, Heine RJ (2007) Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus. Diabetologia 50:2036–2041

    Article  PubMed  CAS  Google Scholar 

  • Malet-Martinoa M, Holzgrabeb U (2011) NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal 55:1–15

    Article  Google Scholar 

  • Moco S, Bino RJ, De Vos RCH, Vervoort J (2007) Metabolomics technologies and metabolite identification. Trends Anal Chem 26:855–866

    Article  CAS  Google Scholar 

  • Neumann S, Böcker S (2010) Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Anal Bioanal Chem 398:2779–2788

    Article  PubMed  CAS  Google Scholar 

  • Newgard CB, An J, Bain JR et al (2009) “A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance.” Cell Metabolism 9:311–326

    Article  PubMed  CAS  Google Scholar 

  • Nygren H, Seppänen-Laakso T, Castillo S, Hyötyläinen T, Orešič M (2011) LC/MS-based lipidomics for studies of body fluids and tissues. Methods Mol Biol 708:247–257

    Google Scholar 

  • Orešič M, Hänninen V, Vidal-Puig A (2008) Lipidomics: a new window to biomedical frontiers. Trends Biotechnol 26:647–652

    Article  PubMed  Google Scholar 

  • Orvall M, Berglund L, Salminen I, Lithell H, Aro A, Vessby B (1996) The serum cholesterol ester fatty acid composition but not the serum concentration of alpha tocopherol predicts the development of myocardial infarction in 50-year-old men: 19 years follow-up. Atherosclerosis 127:65–71

    Article  Google Scholar 

  • Paolisso G, Giugliano D (1996) Oxidative stress and insulin action: is there a relationship? Diabetologia 3(9):357–363

    Article  Google Scholar 

  • Paolisso G, Giugliano D, Pizza G, Gambardella A, Teasauro P, Varricchio M, D´Onofrio F (1992) Glutathione infusion potentiates glucose-induced insulin secretion in aged patients with impaired glucose tolerance. Diabetes Care 15:1–7

    Google Scholar 

  • Paolisso G, Gambardella A, Tagliamonte MR, Saccomanno F, Salvatore T, Gualdiero P, D’Onofrio MV, Howard BV (1996) Does free fatty acid infusion impair insulin action also through an increase in oxidative stress? J Clin Endocrinol Metab 81:4244–4248

    Article  PubMed  CAS  Google Scholar 

  • Pietiläinen K, Róg T, Seppänen-Laakso T, Virtue S, Gopalacharyulu P, Tang J, Rodriguez-Cuenca S, Maciejewski A, Naukkarinen J, Rissanen A, Ruskeepää A-L, Niemelä P, Yetukuri L, Yew Tan C, Velagapudi V, Castillo S, Nygren H, Hyötyläinen T, Kaprio J, Yki-Järvinen H, Vattulainen I, Vidal-Puig A, Orešič M (2011) Remodeling of adipose tissue lipidome as adaptation to acquired obesity: benefits and costs. PLoS Biol 9:e1000623

    Article  PubMed  Google Scholar 

  • Pól J, Vidová V, Hyötyläinen T, Volný M, Novák P, Strohalm M, Kostiainen R, Havlàček V, Wiedmer SK, Holopainen JM (2011) Spatial distribution of glycerophospholipids in R. the ocular lens. PLoS ONE 6:e19441

    Article  PubMed  Google Scholar 

  • Psychogios N, Hau DD, Peng J, Chi Guo A, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huan P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS (2011) Plos One 6:e16957

    Google Scholar 

  • Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & Dev 21:1443–1455

    Article  PubMed  CAS  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Reddy JK (2001) Peroxisomal β-oxidation and steatohepatitis. Semin Liver Dis 21:43–55

    Article  PubMed  CAS  Google Scholar 

  • Reaven GM, Lerner RL, Stern MP, Farquhar JW (1967) Role of insulin in endogenous hypertriglyceridemia. J Clin Invest 46:1756–1767

    Article  PubMed  CAS  Google Scholar 

  • Rondinone CM (2006) Adipocyte-derived hormones, cytokines, and mediators. Endocrine 29:81–90

    Article  PubMed  CAS  Google Scholar 

  • Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212

    Article  PubMed  CAS  Google Scholar 

  • Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–92

    Article  PubMed  CAS  Google Scholar 

  • Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507–520

    Article  PubMed  CAS  Google Scholar 

  • Schwudke D, Liebisch G, Herzog R, Schmitz G, Shevchenko A (2007) Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol 433:175–91

    Article  PubMed  CAS  Google Scholar 

  • Schymanski EL, Meringer M, Brack W (2009) Matching structures to mass spectra using fragmentation patterns: are the results as good as they look? Anal Chem 81:3608–3617

    Article  PubMed  CAS  Google Scholar 

  • Serkova NJ, Jackman M, Brown JL et al (2006) Metabolic profiling of livers and blood from obese Zucker rats. J Hepatol 44:956–962

    Article  PubMed  CAS  Google Scholar 

  • Shlomi T, Cabili MN, Ruppin E (2009) Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol 5:263

    Article  PubMed  Google Scholar 

  • Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Google Scholar 

  • Smith CA, O´Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  PubMed  CAS  Google Scholar 

  • Sumner LW, Urbanczyk-Wochniak E, Broecklin CD (2008) Metabolomics data analysis, visualization, and integration. Methods Mol Biol 406:409–436

    Google Scholar 

  • Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810

    Article  PubMed  CAS  Google Scholar 

  • Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16

    Article  PubMed  CAS  Google Scholar 

  • Trawick JD, Schilling CH (2006) Use of constraint-based modeling for the prediction and validation of antimicrobial targets. Biochem Pharmacol 71:1026–1035

    Article  PubMed  CAS  Google Scholar 

  • Trayhurn P, Bing C (2006) Appetite and energy balance signals from adipocytes. Philos Trans R Soc Lond B Biol Sc 361:1237–1249

    Article  CAS  Google Scholar 

  • Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54:2674–2684

    Article  PubMed  CAS  Google Scholar 

  • Trim PJ, Atkinson SJ, Princivalle AP, Marshall PS, West A, Clench MR (2008) Matrix-assisted laser desorption/ionisation mass spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis. Rapid Commun Mass Spectrom 22:1503–1509

    Article  PubMed  CAS  Google Scholar 

  • Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JBL, Nieuwdorp M (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613

    Article  PubMed  CAS  Google Scholar 

  • Weber RJ, Southam AD, Sommer U, Viant MR (2011) Characterization of Isotopic Abundance Measurements in high resolution FT-ICR and orbitrap mass spectra for improved confidence of metabolite identification. Anal Chem 83:3737–3743

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH (2003) Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 78:91–98

    PubMed  CAS  Google Scholar 

  • Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed  Google Scholar 

  • Westerbacka J, Kotronen A, Fielding BA, Wahren J, Hodson L, Perttila J, Seppanen-Laakso T, Suortti T, Arola J, Hultcrantz R, Castillo S, Olkkonen VM, Frayn KN, Oresic M, Yki-Jarvinen H (2010) Splanchnic balance of free fatty acids, endocannabinoids and lipids in subjects with NAFLD. Gastroenterology doi:10.1053/j.gastro.2010.06.064

    Google Scholar 

  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. PNAS 106:3698–3703

    Article  PubMed  CAS  Google Scholar 

  • Wojtczak L, Schonfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183:41–57

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Schmidt S, Muller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinf 11:148

    Article  Google Scholar 

  • Wopereis S, Radonjic M, Rubingh C, Erk Mv, Smilde A, Duyvenvoorde Wv, Cnubben N, Kooistra T, Ommen Bv, Kleemann R (2012) Identification of prognostic and diagnostic biomarkers of glucose intolerance in ApoE3Leiden mice. Physiol Genomics 1(44):293–304

    Google Scholar 

  • Wu C, Ifa DR, Manicke NE, Cooks RG (2009) Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray Ionization. Anal Chem 81:7618–7624

    Article  PubMed  CAS  Google Scholar 

  • Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38:W71–W77

    Article  PubMed  CAS  Google Scholar 

  • Xie B, Waters MJ, Schirra H (2012) Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechn 2012:805683

    Google Scholar 

  • Xu Y, Heilier JF, Madalinski G, Genin E, Ezan E, Tabet JC, Junot C (2010) Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-Orbitrap mass spectrometer for further metabolomics database building. Anal Chem 82:5490–5501

    Article  PubMed  CAS  Google Scholar 

  • Yang LV, Radu CG, Wang L, Riedinger M, Witte ON (2005) Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood 105:1127–1134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuulia Hyötyläinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hyötyläinen, T. (2014). Metabolomics in the Systems-Level Study of the Metabolic Syndrome. In: Orešič, M., Vidal-Puig, A. (eds) A Systems Biology Approach to Study Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-01008-3_11

Download citation

Publish with us

Policies and ethics