Skip to main content

Proteomics in the Systems-Level Study of the Metabolic Syndrome

  • Chapter
  • First Online:
Book cover A Systems Biology Approach to Study Metabolic Syndrome

Abstract

Proteomics has come a long way from the initial qualitative analysis of proteins present in a given sample to the large-scale characterization of proteomes, their interactions and dynamic behaviour in time and space. Originally enabled by breakthroughs in protein separation and visualization (by two-dimensional gels electrophoresis) and protein identification (by mass spectrometry), the discipline now encompasses a large body of protein and peptide separation, labelling, detection and sequencing tools supported by stable-isotope- and label-free techniques and computational data processing for quantitative proteomics. The key functional importance to investigate the protein complement has driven the study of proteomes in numerous physiological and pathological conditions. Proteomics has been mainly applied in discovering novel biomarkers of disease, evidenced by the fact that most clinical tests today measure proteins in blood. Moreover, understanding the proteome helps investigate health and disease states and understand the mechanisms of action of specific molecules, e.g., nutrients or drugs. Here, we briefly recapitulate proteomic technologies and cover their evolution to today’s and future cutting-edge platforms. Then we review and discuss proteomic applications to the study of the metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi J, Kumar C, Zhang Y, Mann M (2007) In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol Cell Proteomics 6(7):1257–12739

    Article  PubMed  CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  PubMed  CAS  Google Scholar 

  • Ahmed M, Neville MJ, Edelmann MJ, Kessler BM, Karpe F (2010) Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity 18(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Ahrens CH, Brunner E, Qeli E, Basler K, Aebersold R (2010) Generating and navigating proteome maps using mass spectrometry. Nat Rev Mol Cell Bio 11(11):789–801

    Article  CAS  Google Scholar 

  • Alaiya A, Al-Mohanna M, Linder S (2005) Clinical cancer proteomics: promises and pitfalls. J Proteome Res 4(4):1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Alkhalaf A, Zurbig P, Bakker SJ, Bilo HJ, Cerna M, Fischer C, Fuchs S, Janssen B, Medek K, Mischak H, Roob JM, Rossing K, Rossing P, Rychlik I, Sourij H, Tiran B, Winklhofer-Roob BM, Navis GJ, Group PREDICTIONS (2010) Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS ONE (Electronic Resource) 5(10):e13421

    Article  PubMed  CAS  Google Scholar 

  • Allet N, Barrillat N, Baussant T, Boiteau C, Botti P, Bougueleret L, Budin N, Canet D, Carraud S, Chiappe D, Christmann N, Colinge J, Cusin I, Dafflon N, Depresle B, Fasso I, Frauchiger P, Gaertner H, Gleizes A, Gonzalez-Couto E, Jeandenans C, Karmime A, Kowall T, Lagache S, Mahe E, Masselot A, Mattou H, Moniatte M, Niknejad A, Paolini M, Perret F, Pinaud N, Ranno F, Raimondi S, Reffas S, Regamey PO, Rey PA, Rodriguez-Tome P, Rose K, Rossellat G, Saudrais C, Schmidt C, Villain M, Zwahlen C (2004) In vitro and in silico processes to identify differentially expressed proteins. Proteomics 4(8):2333–2351

    Article  PubMed  CAS  Google Scholar 

  • Amacher DE (1998) Serum transaminase elevations as indicators of hepatic injury following the administration of drugs. Regul Toxicol Pharmacol 27(2):119–130

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson E, Viguerie N, Andersson I, Verdich C, Langin D, Arner P (2004) Effects of different hypocaloric diets on protein secretion from adipose tissue of obese women. Diabetes 53(8):1966–1971

    Article  PubMed  CAS  Google Scholar 

  • Banks RE, Dunn MJ, Hochstrasser DF, Sanchez JC, Blackstock W, Pappin DJ, Selby PJ (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet 356(9243):1749–1756

    Article  PubMed  CAS  Google Scholar 

  • Bateman RH, Carruthers R, Hoyes JB, Jones C, Langridge JI, Millar A, Vissers JP (2002) A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 13(7):792–803

    Article  PubMed  CAS  Google Scholar 

  • Bendall SC, Simonds EF, Qiu P, Amir el-AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696

    Article  PubMed  CAS  Google Scholar 

  • Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods 2(8):587–589

    Article  PubMed  CAS  Google Scholar 

  • Birner-Gruenberger R, Susani-Etzerodt H, Waldhuber M, Riesenhuber G, Schmidinger H, Rechberger G, Kollroser M, Strauss JG, Lass A, Zimmermann R, Haemmerle G, Zechner R, Hermetter A (2005) The lipolytic proteome of mouse adipose tissue. Mol Cell Proteomics 4(11):1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Bouwman FG, Claessens M, Baak MA van, Noben JP, Wang P, Saris WH, Mariman EC (2009) The physiologic effects of caloric restriction are reflected in the in vivo adipocyte-enriched proteome of overweight/obese subjects. J Proteome Res 8(12):5532–5540

    Article  PubMed  CAS  Google Scholar 

  • Brody EN, Gold L, Lawn RM, Walker JJ, Zichi D (2010) High-content affinity-based proteomics: unlocking protein biomarker discovery. Expert Rev Mol Diagn 10(8):1013–1022

    Article  PubMed  CAS  Google Scholar 

  • Brunner Y, Coute Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF, Wollheim CB, Sanchez JC (2007) Proteomics analysis of insulin secretory granules. Mol Cell Proteomics 6(6):1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Calvo SE, Mootha VK (2010) The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 11:25–44

    Article  PubMed  CAS  Google Scholar 

  • Cargile BJ, Stephenson JL Jr (2004) An alternative to tandem mass spectrometry: isoelectric point and accurate mass for the identification of peptides. Anal Chem 76(2):267–275

    Article  PubMed  CAS  Google Scholar 

  • Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1(4):317–323

    Article  PubMed  CAS  Google Scholar 

  • Colinge J, Masselot A, Giron M, Dessingy T, Magnin J (2003) OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3(8):1454–1463

    Article  PubMed  CAS  Google Scholar 

  • Collins H, Najafi H, Buettger C, Rombeau J, Settle RG, Matschinsky FM (1992) Identification of glucose response proteins in two biological models of beta-cell adaptation to chronic high glucose exposure. J Biol Chem 267(2):1357–1366

    PubMed  CAS  Google Scholar 

  • Conrads TP, Anderson GA, Veenstra TD, Pasa Tolic L, Smith RD (2000) Utility of accurate mass tags for proteome-wide protein identification. Anal Chem 72:3349–3354 (15 Jul 2000)

    Article  PubMed  CAS  Google Scholar 

  • Corton M, Villuendas G, Botella JI, San Millan JL, Escobar-Morreale HF, Peral B (2004) Improved resolution of the human adipose tissue proteome at alkaline and wide range pH by the addition of hydroxyethyl disulfide. Proteomics 4(2):438–441

    Article  PubMed  CAS  Google Scholar 

  • Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski D (2010) China pushes for the proteome. Nature 467:380

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Scherer PE (2010) Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci 1212:E1–E199

    Article  PubMed  Google Scholar 

  • Deng WJ, Nie S, Dai J, Wu JR, Zeng R (2010) Proteome, phosphoproteome, and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages. Mol Cell Proteomics 9(1):100–116

    Article  PubMed  CAS  Google Scholar 

  • Domon B, Broder S (2004) Implications of new proteomics strategies for biology and medicine. J Proteome Res 3(2):253–260

    Article  PubMed  CAS  Google Scholar 

  • Edvardsson U, Alexandersson M, Brockenhuus LH von, Nystrom AC, Ljung B, Nilsson F, Dahllof B (1999) A proteome analysis of livers from obese (ob/ob) mice treated with the peroxisome proliferator WY14,643. Electrophoresis 20(4–5):935–942

    Article  PubMed  CAS  Google Scholar 

  • Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214

    Article  PubMed  CAS  Google Scholar 

  • Elias JE, Haas W, Faherty BK, Gygi SP (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2(9):667–675

    Article  PubMed  CAS  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  • Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci U. S. A. 100(10):5813–5818

    Article  PubMed  CAS  Google Scholar 

  • Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR, Hotamisligil GS (2011) Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473(7348):528–531

    Article  PubMed  CAS  Google Scholar 

  • Gartner CA, Elias JE, Bakalarski CE, Gygi SP (2007) Catch-and-release reagents for broadscale quantitative proteomics analyses. J Proteome Res 6(4):1482–1491

    Article  PubMed  CAS  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3(5):958–964

    Article  PubMed  CAS  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U. S. A. 100(12):6940–6945

    CAS  Google Scholar 

  • Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9(6):1683–1695

    Article  PubMed  CAS  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6) doi: 10.1074/mcp.O111.016717:1–17

    Google Scholar 

  • Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS.One 5(12):e15004

    Article  PubMed  CAS  Google Scholar 

  • Goodlett DR, Keller A, Watts JD, Newitt R, Yi EC, Purvine S, Eng JK, Haller P von, Aebersold R, Kolker E (2001) Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom 15(14):1214–1221

    Article  PubMed  CAS  Google Scholar 

  • Gygi S, Rist B, Gerber S, Turecek F, Gelb M, Aebersold R (1999a) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999b) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    CAS  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546

    Article  PubMed  CAS  Google Scholar 

  • Hanke S, Mann M (2009) The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 8(3):519–534

    Article  PubMed  CAS  Google Scholar 

  • Hansen BT, Jones JA, Mason DE, Liebler DC (2001) SALSA: a pattern recognition algorithm to detect electrophile-adducted peptides by automated evaluation of CID spectra in LC-MS-MS analyses. Anal Chem 73(8):1676–1683

    Article  PubMed  CAS  Google Scholar 

  • Hojlund K, Wrzesinski K, Larsen PM, Fey SJ, Roepstorff P, Handberg A, Dela F, Vinten J, McCormack JG, Reynet C, Beck-Nielsen H (2003) Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278(12):10436–10442

    Article  PubMed  CAS  Google Scholar 

  • Hoofnagle AN, Aebersold R, Anderson NL, Felsenfeld A, Liebler DC (2011) Painting a moving picture: large-scale proteomics efforts and their potential for changing patient care. Clin Chem 57(10):1357–1360

    Article  PubMed  CAS  Google Scholar 

  • Hsich G, Kenney K, Gibbs CJ, Lee KH, Harrington MG (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335(13):924–930

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham CR (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40(4):430–443

    Article  PubMed  CAS  Google Scholar 

  • Hwang H, Bowen BP, Lefort N, Flynn CR, De Filippis EA, Roberts C, Smoke CC, Meyer C, Hojlund K, Yi Z, Mandarino LJ (2010) Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes 59(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Ibarrola N, Kalume DE, Gronborg M, Iwahori A, Pandey A (2003) A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal Chem 75(22):6043–6049

    Article  PubMed  CAS  Google Scholar 

  • Ippel JH, Pouvreau L, Kroef T, Gruppen H, Versteeg G, Putten P van den, Struik PC, Mierlo CPM van (2004) In vivo uniform 15N-isotope labelling of plants: using the greenhouse for structural proteomics. Proteomics 4(1):226–234

    Article  PubMed  CAS  Google Scholar 

  • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9):1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8(1):33–41

    Article  PubMed  CAS  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5392

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Choi YS, Lim S, Yea K, Yoon JH, Jun DJ, Ha SH, Kim JW, Kim JH, Suh PG, Ryu SH, Lee TG (2010) Comparative analysis of the secretory proteome of human adipose stromal vascular fraction cells during adipogenesis. Proteomics 10(3):394–405

    Article  PubMed  CAS  Google Scholar 

  • Kratchmarova I, Kalume DE, Blagoev B, Scherer PE, Podtelejnikov AV, Molina H, Bickel PE, Andersen JS, Fernandez MM, Bunkenborg J, Roepstorff P, Kristiansen K, Lodish HF, Mann M, Pandey A (2002) A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol Cell Proteomics 1(3):213–222

    Article  PubMed  CAS  Google Scholar 

  • Krijgsveld J, Ketting, RF Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RH, Heck AJ (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21(8):927–931

    Article  PubMed  CAS  Google Scholar 

  • Kruger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U. S. A. 105(7):2451–2456

    Article  PubMed  Google Scholar 

  • Kuster B, Schirle M, Mallick P, Aebersold R (2005) Scoring proteomes with proteotypic peptide probes. Nat Rev. Mol Cell Biol 6(7):577–583

    CAS  Google Scholar 

  • Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, Kaufman JM, Ryden M, Muller S, Hanisch FG, Ruige J, Arner P, Sell H, Eckel J (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60(7):1917–1925

    Article  PubMed  CAS  Google Scholar 

  • Lanne B, Potthast F, Hoglund A, Brockenhuus LH von, Nystrom AC, Nilsson F, Dahllof B (2001) Thiourea enhances mapping of the proteome from murine white adipose tissue. Proteomics 1(7):819–828

    Article  PubMed  CAS  Google Scholar 

  • Larsen TM, Dalskov SM, Baak M van, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, Astrup A (2010) Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med 363(22):2102–2113

    Article  PubMed  CAS  Google Scholar 

  • Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, Eling WM, Hall N, Waters AP, Stunnenberg HG, Mann M (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419(6906):537–542

    Article  PubMed  CAS  Google Scholar 

  • Legrain P, Aebersold R, Archakov A, Bairoch A, Bala K, Beretta L, Bergeron J, Borchers CH, Corthals GL, Costello CE, Deutsch EW, Domon B, Hancock W, He F, Hochstrasser D, Marko-Varga G, Salekdeh GH, Sechi S, Snyder M, Srivastava S, Uhlen M, Wu CH, Yamamoto T, Paik YK, Omenn GS (2011) The human proteome project: current state and future direction. Mol Cell Proteomics 10(7):M111

    PubMed  Google Scholar 

  • Leptos KC, Sarracino DA, Jaffe JD, Krastins B, Church GM (2006) MapQuant: open-source software for large-scale protein quantification. Proteomics 6(6):1770–1782

    Article  PubMed  CAS  Google Scholar 

  • Lescuyer P, Hochstrasser D, Rabilloud T (2007) How shall we use the proteomics toolbox for biomarker discovery? J Proteome Res 6(9):3371–3376

    Article  PubMed  CAS  Google Scholar 

  • Li XJ, Yi EC, Kemp CJ, Zhang H, Aebersold R (2005) A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Mol Cell Proteom 4:1328–1340 (Sep 2005)

    Article  CAS  Google Scholar 

  • Li RX, Chen HB, Tu K, Zhao SL, Zhou H, Li SJ, Dai J, Li QR, Nie S, Li YX, Jia WP, Zeng R, Wu JR (2008) Localized-statistical quantification of human serum proteome associated with type 2 diabetes. PLoS ONE (Electronic Resource) 3(9):e3224

    Article  PubMed  CAS  Google Scholar 

  • Lisacek F, Cohen Boulakia S, Appel RD (2006) Proteome informatics II: Bioinformatics for comparative proteomics. Proteomics 6:5445–5466 (Oct 2006)

    Article  PubMed  CAS  Google Scholar 

  • Liu HB, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201

    Article  PubMed  CAS  Google Scholar 

  • MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485):1760–1763

    PubMed  CAS  Google Scholar 

  • Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695–709

    Article  PubMed  CAS  Google Scholar 

  • Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25(1):125–131

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Hojrup P, Roepstorff P (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22(6):338–345

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66(24):4390–4399

    Article  PubMed  CAS  Google Scholar 

  • Matthiesen R (2007) Methods, algorithms and tools in computational proteomics: a practical point of view. Proteomics 7(16):2815–2832

    Article  PubMed  CAS  Google Scholar 

  • Matthiesen R, Lundsgaard M, Welinder KG, Bauw G (2003) Interpreting peptide mass spectra by VEMS. Bioinf 19(6):792–793

    Article  CAS  Google Scholar 

  • Matthiesen R, Bunkenborg J, Stensballe A, Jensen ON, Welinder KG, Bauw G (2004) Database-independent, database-dependent, and extended interpretation of peptide mass spectra in VEMS V2.0. Proteomics 4(9):2583–2593

    Article  PubMed  CAS  Google Scholar 

  • Matthiesen R, Trelle MB, Hojrup P, Bunkenborg J, Jensen ON (2005) VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res 4(6):2338–2347

    Article  PubMed  CAS  Google Scholar 

  • Metz TO, Jacobs JM et al (2006) Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS. J Proteome Res 5(12):3345–3354

    Article  PubMed  CAS  Google Scholar 

  • Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY, Vitek O, Aebersold R, Muller M (2007) SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7(19):3470–3480

    Article  PubMed  CAS  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658

    Article  PubMed  CAS  Google Scholar 

  • Norbeck AD, Monroe ME, Adkins JN, Anderson KK, Daly DS, Smith RD (2005) The utility of accurate mass and LC elution time information in the analysis of complex proteomes. J Am Soc Mass Spectrom 16(8):1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  PubMed  CAS  Google Scholar 

  • Palagi PM, Walther D, Quadroni M, Catherinet S, Burgess J, Zimmermann Ivol CG, Sanchez JC, Binz PA, Hochstrasser DF, Appel RD (2005) MSight: an image analysis software for liquid chromatography-mass spectrometry. Proteomics 5:2381–2384 (Jun 2005)

    Article  PubMed  CAS  Google Scholar 

  • Palmblad M, Ramstrom M, Bailey CG, McCutchen-Maloney SL, Bergquist J, Zeller LC (2004) Protein identification by liquid chromatography-mass spectrometry using retention time prediction. J Chromatogr B Analyt Technol Biomed Life Sci 803(1):131–135

    Article  PubMed  CAS  Google Scholar 

  • Panchaud A, Hansson J, Affolter M, Rhlid RB, Piu S, Moreillon P, Kussmann M (2008) ANIBAL—stable-isotope-based quantitative proteomics by ANIline and Benzoic acid labeling of amino and carboxylic groups. Mol Cell Proteomics 7(4):800–812

    Google Scholar 

  • Panchaud A, Scherl A, Shaffer SA, Haller PD von, Kulasekara HD, Miller SI, Goodlett DR (2009) Precursor acquisition independent from ion count: how to dive deeper into the proteomics ocean. Anal Chem 81(15):6481–6488

    Article  PubMed  CAS  Google Scholar 

  • Panchaud A, Jung S, Shaffer SA, Aitchison JD, Goodlett DR (2011) Faster, quantitative, and accurate precursor acquisition independent from ion count. Anal Chem 83(6):2250–2257

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Perez-Perez R, Ortega-Delgado FJ, Garcia-Santos E, Lopez JA, Camafeita E, Ricart W, Fernandez-Real JM, Peral B (2009) Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J Proteome Res 8(4):1682–1693

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protocols 1(2):1029–1043

    Article  CAS  Google Scholar 

  • Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah AS, Meng L, Stark MJ, Stern DF, De VC, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki PF, Snyder M (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679–684

    Article  PubMed  CAS  Google Scholar 

  • Rao PV, Reddy AP, Lu X, Dasari S, Krishnaprasad A, Biggs E, Roberts CT, Nagalla SR (2009) Proteomic identification of salivary biomarkers of type-2 diabetes. J Proteome Res 8(1):239–245

    Article  PubMed  CAS  Google Scholar 

  • Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12(8):1231–1245

    Article  PubMed  CAS  Google Scholar 

  • Raymond F, Metairon S, Borner R, Hofmann M, Kussmann M (2006) Automated target preparation for microarray-based gene expression analysis. Anal Chem 78(18):6299–6305

    Article  PubMed  CAS  Google Scholar 

  • Riaz S, Skinner V, Srai SK (2011) Effect of high dose thiamine on the levels of urinary protein biomarkers in diabetes mellitus type 2. J Pharm Biomed Anal 54(4):817–825

    Article  PubMed  CAS  Google Scholar 

  • Righetti PG, Boschetti E (2007) Sherlock Holmes and the proteome—a detective story. FEBS J 274(4):897–905

    Article  PubMed  CAS  Google Scholar 

  • Righetti PG, Boschetti E, Lomas L, Citterio A (2006) Protein equalizer technology: the quest for a “democratic proteome”. Proteomics 6(14):3980–3992

    Article  PubMed  CAS  Google Scholar 

  • Righetti PG, Castagna A, Antonioli P, Boschetti E (2005) Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis 26(2):297–319

    Article  PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Aliaga I, Marvin-Guy LF, Wang P, Wagniere S, Mansourian R, Fuerholz A, Saris WH, Astrup A, Mariman EC, Kussmann M (2011) Mechanisms of weight maintenance under high- and low-protein, low-glycaemic index diets. Mol Nutr Food Res 55(11):1603–1612

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JC, Chiappe D, Converset V, Hoogland C, Binz PA, Paesano S, Appel RD, Wang S, Sennitt M, Nolan A, Cawthorne MA, Hochstrasser DF (2001) The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics 1(1):136–163

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JC, Converset V, Nolan A, Schmid G, Wang S, Heller M, Sennitt MV, Hochstrasser DF, Cawthorne MA (2003) Effect of rosiglitazone on the differential expression of obesity and insulin resistance associated proteins in lep/lep mice. Proteomics 3(8):1500–1520

    Article  PubMed  CAS  Google Scholar 

  • Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22(13):4723–4738

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  PubMed  CAS  Google Scholar 

  • Scherl A, Shaffer SA, Taylor GK, Kulasekara HD, Miller SI, Goodlett DR (2008) Genome-specific gas-phase fractionation strategy for improved shotgun proteomic profiling of proteotypic peptides. Anal Chem 80(4):1182–1191

    Article  PubMed  CAS  Google Scholar 

  • Schlatzer DM, Dazard JE, Dharsee M, Ewing RM, Ilchenko S, Stewart I, Christ G, Chance MR (2009) Urinary protein profiles in a rat model for diabetic complications. Mol Cell Proteomics 8(9):2145–2158

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1):4–15

    Article  PubMed  CAS  Google Scholar 

  • Schrimpe-Rutledge AC, Fontes G, Gritsenko MA, Norbeck AD, Anderson DJ, Waters KM, Adkins JN, Smith RD, Poitout V (2012) Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics. J Proteome Res 11(7):3520–3532

    Article  PubMed  CAS  Google Scholar 

  • Singh LP, Jiang Y, Cheng DW (2007) Proteomic identification of 14-3-3zeta as an adapter for IGF-1 and Akt/GSK-3beta signaling and survival of renal mesangial cells. Int J Biol Sci 3(1):27–39

    Article  CAS  Google Scholar 

  • Starkey JM, Zhao Y, Sadygov RG, Haidacher SJ, Lejeune WS, Dey N, Luxon BA, Kane MA, Napoli JL, Denner L, Tilton RG (2010) Altered retinoic acid metabolism in diabetic mouse kidney identified by O isotopic labeling and 2D mass spectrometry. PLoS ONE (Electronic Resource) 5(6):e11095

    Article  PubMed  CAS  Google Scholar 

  • Sunyaev S, Liska AJ, GolodA, Shevchenko A, Shevchenko A (2003) MultiTag: multiple error-tolerant sequence tag search for the sequence-similarity identification of proteins by mass spectrometry. Anal Chem 75(6):1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Surinova S, Schiess R, Huttenhain R, Cerciello F, Wollscheid B, Aebersold R (2011) On the development of plasma protein biomarkers. J Proteome Res 10(1):5–16

    Article  PubMed  CAS  Google Scholar 

  • Suss C, Czupalla C, Winter C, Pursche T, Knoch KP, Schroeder M, Hoflack B, Solimena M (2009) Rapid changes of mRNA-binding protein levels following glucose and 3-isobutyl-1-methylxanthine stimulation of insulinoma INS-1 cells. Mol Cell Proteomics 8(3):393–408

    Article  PubMed  CAS  Google Scholar 

  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004a) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U. S. A. 101(26):9528–9533

    CAS  Google Scholar 

  • Syka JE, Marto JA, Bai DL, Horning S, Senko MW, Schwartz JC, Ueberheide B, Garcia B, Busby S, Muratore T, Shabanowitz J, Hunt DF (2004b) Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J Proteome Res 3(3):621–626

    Article  CAS  Google Scholar 

  • Tabb DL, Saraf A, Yates JR III (2003) GutenTag: high-throughput sequence tagging via an empirically derived fragmentation model. Anal Chem 75(23):6415–6421

    Article  PubMed  CAS  Google Scholar 

  • Tilton RG, Haidacher SJ, Lejeune WS, Zhang X, Zhao Y, Kurosky A, Brasier AR, Denner L (2007) Diabetes-induced changes in the renal cortical proteome assessed with two-dimensional gel electrophoresis and mass spectrometry. Proteomics 7(10):1729–1742

    Article  PubMed  CAS  Google Scholar 

  • Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, Arthur JM (2007) Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol 18(3):913–922

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283(5407):1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Lam KS, Lam JB, Lam MC, Leung PT, Zhou M, Xu A (2007) Overexpression of angiopoietin-like protein 4 alters mitochondria activities and modulates methionine metabolic cycle in the liver tissues of db/db diabetic mice. Mol Endocrinol 21(4):972–986

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Holst C, Andersen MR, Astrup A, Bouwman FG, Otterdijk S van, Wodzig WK, Baak MA van, Larsen TM, Jebb SA, Kafatos A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Saris WH, Mariman EC (2011a) Blood profile of proteins and steroid hormones predicts weight change after weight loss with interactions of dietary protein level and glycemic index. PLoS. One 6(2):e16773

    Article  CAS  Google Scholar 

  • Wang P, Holst C, Astrup A, Bouwman FG, Otterdijk S van, Wodzig WK, Andersen MR, Baak MA van, Rasmussen LG, Alfredo MJ, Jebb SA, Pfeiffer AF, Kafatos A, Handjieva-Darlenska T, Hlavaty P, Saris WH, Mariman EC (2012) Blood profiling of proteins and steroids during weight maintenance with manipulation of dietary protein level and glycaemic index. Br J Nutr 107: 106–119

    Google Scholar 

  • Wang QM, Yang H, Tian DR, Cai Y, Wei ZN, Wang F, Yu AC, Han JS (2011b) Proteomic analysis of rat hypothalamus revealed the role of ubiquitin-proteasome system in the genesis of DR or DIO. Neurochem Res 36(6):939–946

    Article  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247

    Article  PubMed  CAS  Google Scholar 

  • Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27(4):378–386

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR III (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76(17):4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Yang H, Kong X, Wang K, Mao X, Yan X, Wang Y, Liu S, Zhang X, Li J, Chen L, Wu J, Wei M, Yang J, Guan Y (2011) Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. Am J Physiol Endocrinol Metab 300(2):E287–E295

    Article  PubMed  CAS  Google Scholar 

  • Zhen Y, Xu N, Richardson B, Becklin R, Savage JR, Blake K, Peltier JM (2004) Development of an LC-MALDI method for the analysis of protein complexes. J Am Soc Mass Spectrom 15(6):803–822

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Xiao Y, Li R, Hong S, Li S, Wang L, Zeng R, Liao K (2009) Quantitative analysis of secretome from adipocytes regulated by insulin. Acta Biochim Biophys Sin 41(11):910–921

    Article  PubMed  CAS  Google Scholar 

  • Zubarev RA, Hakansson P, Sundqvist B (1996) Accuracy requirements for peptide characterization by monoisotopic molecular mass measurements. Anal Chem 68(22):4060–4063

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kussmann PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubio-Aliaga, I., Silva-Zolezzi, I., Affolter, M., Dayon, L., Panchaud, A., Kussmann, M. (2014). Proteomics in the Systems-Level Study of the Metabolic Syndrome. In: Orešič, M., Vidal-Puig, A. (eds) A Systems Biology Approach to Study Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-01008-3_10

Download citation

Publish with us

Policies and ethics