Skip to main content

The State-of-the-Art Numerical Tools for Modeling Landslide Tsunamis: A Short Review

  • Chapter
  • First Online:
Submarine Mass Movements and Their Consequences

Abstract

We present a short review of the state-of-the-art numerical tools that have been used for modeling landslide-generated waves. A comparative study is conducted on the physical properties of earthquake- and landslide-generated waves suggesting that both dispersion and nonlinearity effects may be neglected for the former waves whereas they may be considered for the latter ones. We introduce landslide tsunami models and group them into three classes: (1) models treating the moving mass as a fluid, (2) models estimating the initial water surface, and (3) models fed by the transient seafloor deformation. Selection of a particular model from the list of models introduced here depends on: (1) the dimensions of the source, (2) the available computing capacities, (3) availability of fine bathymetric grid, and (4) the purposes of the modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assier-Rzadkieaicz S, Heinrich P, Sabatier PC, Savoye B, Bourillet JF (2000) Numerical modeling of a landslide-generated tsunami: the 1979 nice event. Pure Appl Geophys 157(10):1707–1727

    Article  Google Scholar 

  • Borrero JC, Legg MR, Synolakis CE (2004) Tsunami sources in the southern California bight. Geophys Res Lett 31(13):L13211

    Article  Google Scholar 

  • Brune S, Babeyko AY, Gaedicke C, Ladage S (2010) Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia. Nat Hazards 53(2):205–218

    Article  Google Scholar 

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson RE (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57

    Article  Google Scholar 

  • Fritz HM et al (2011) Field survey of the 27 February 2010 Chile tsunami. Pure Appl Geophys 168:1989–2010

    Article  Google Scholar 

  • Fujii Y, Satake K (2007) Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide Gauge and satellite data. Bull Seismol Soc Am 97(1A):S192–S207

    Article  Google Scholar 

  • Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:815–820

    Article  Google Scholar 

  • Geist EL, Lynett PJ, Chaytor JD (2009) Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar Geol 264(1):41–52

    Article  Google Scholar 

  • Goto C, Ogawa Y, Shuto N, Imamura F (1997) Numerical method of tsunami simulation with the leap-frog scheme (IUGG/IOC time project), IOC Manual, UNESCO, No. 35

    Google Scholar 

  • Gutenberg B (1939) Tsunamis and earthquakes. Bull Seismol Soc Am 29(4):517–526

    Google Scholar 

  • Harbitz CB (1992) Model simulations of Tsunamis generated by the Storegge Slides. Mar Geol 105:1–21

    Article  Google Scholar 

  • Heidarzadeh M, Satake K (2013) Waveform and spectral analyses of the 2011 Japan Tsunami records on Tide Gauge and DART stations across the Pacific Ocean. Pure Appl Geophys 170(6–8):1275–1293. doi:10.1007/s00024-012-0558-5

    Article  Google Scholar 

  • Heinrich P (1992) Nonlinear water waves generated by submarine and aerial landslides. J Waterw Port, Coast, Ocean Eng ASCE 118(3):249–266

    Article  Google Scholar 

  • Heinrich P, Guibourg S, Mangeney A, Roche R (1999) Numerical modeling of a landslide-generated tsunami following a potential explosion of the Montserrat volcano. Phys Chem Earth A 24(2):163–168

    Article  Google Scholar 

  • Iglesias O, Lastras G, Canals M, Olabarrieta M, González M, Aniel-Quiroga Í, Otero L, Duran R, Amblas D, Casamor JL, Tahchi E, Tinti S, De Mol B (2012) The BIG’95 submarine landslide–generated tsunami: a numerical simulation. J Geol 120(1):31–48

    Article  Google Scholar 

  • Imamura F, Imteaz MA (1995) Long waves in two layer, governing equations and numerical model. Sci Tsunami Hazards 13:3–24

    Google Scholar 

  • Insel I (2010) Landslide characteristics and tsunami generation, MSc thesis in METU Department of Civil Engineering, Coastal and Ocean Engineering Division

    Google Scholar 

  • Jiang L, LeBlond PH (1992) The coupling of a submarine slide and the surface waves which it generates. J Geophys Res 97(C8):12731–12744

    Article  Google Scholar 

  • Kawamata K, Takaoka K, Ban K, Imamura F, Yamaki S, Kobayashi E (2005) Model of tsunami generation by collapse of volcanic eruption: The 1741 Oshima-Oshima tsunami. In: Satake K (ed) Tsunamis. Springer, Dordrecht, pp 79–96

    Chapter  Google Scholar 

  • Liu PL-F, Woo S-B, Cho Y-S (1998) Computer programs for tsunami propagation and inundation. Technical report, Cornell University

    Google Scholar 

  • Liu PL-F, Wu T-R, Raichlen F, Synolakis C, Borrero JC (2005) Runup and rundown generated by three-dimensional sliding masses. J Fluid Mech 536:107–144

    Article  Google Scholar 

  • Lynett P, Liu PL-F (2002) A numerical study of submarine–landslide–generated waves and run–up. Proc R Soc Lond A 458:2885–2910

    Article  Google Scholar 

  • Lynett PJ, Borrero JC, Liu PL-F, Synolakis CE (2003) Field survey and numerical simulations: a review of the 1998 Papua New Guinea tsunami. Pure Appl Geophys 160:2119–2146

    Article  Google Scholar 

  • Myres EP, Baptsta AM (2001) Analysis of factors influencing simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska tsunamis. Nat Hazards 23:1–28

    Article  Google Scholar 

  • Okal EA, Plafker G, Synolakis CE, Borrero JC (2003) Near-field survey of the 1946 Aleutian tsunami on Unimak and Sanak Islands. Bull Seismol Soc Am 93(3):1226–1234

    Article  Google Scholar 

  • Rabinovich AB, Thomson RE (2007) The 26 December 2004 Sumatra tsunami: analysis of Tide Gauge data from the World Ocean Part 1. Indian Ocean and South Africa. Pure Appl Geophys 164:261–308

    Article  Google Scholar 

  • Rabinovich AB, Thomson RE, Kulikov EA, Bornhold BD, Fine IV (1999) The landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska: a case study. Geophys Res Lett 26(19):3009–3012

    Article  Google Scholar 

  • Rabinovich AB, Thomson RE, Fine IV (2012) The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States. Pure Appl Geophys. doi:10.1007/s00024-012-0541-1

    Google Scholar 

  • Satake K (2001) Tsunami modeling from submarine landslides. In: Proceedings of the international Tsunami symposium, Seattle, Washington (USA), 7–10 August 2001, vol 6, paper 6-4

    Google Scholar 

  • Satake K (2012) Tsunamis generated by submarine landslides. Submarine mass movements and their consequences, Springer, pp 475–484

    Google Scholar 

  • Satake K, Tanioka Y (1995) Tsunami generation of the 1993 Hokkaido Nansei-Oki earthquake. Pure Appl Geophys 144(3/4):803–821

    Article  Google Scholar 

  • Synolakis CE (2003) Tsunami and seiche. In: Chen WF, Scawthorn C (eds) Earthquake engineering handbook. CRC Press, Boca Raton, pp 1–90, Chapter 9

    Google Scholar 

  • Synolakis CE, Bardet J-P, Borrero JC, Davies HL, Okal EA, Silver EA, Sweet S, Tappin DR (2002) The slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc Lond A 458:763–789

    Article  Google Scholar 

  • Synolakis C, Bernard E, Titov V, Kanoglu U, Gonzalez F (2008) Validation and verification of tsunami numerical models. Pure Appl Geophys 165(11–12):2197–2228

    Article  Google Scholar 

  • Thomson RE, Rabinovich AB, Kulikov EA, Fine IV, Bornhold BB (2001) On numerical simulation of the landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska. In: Hebenstrait GT (ed) Tsunami research at the end of a critical decade, vol 18, Advances in natural and technological hazards research. Kluwer Academic Publishers, Dordrecht, pp 243–282, 304 p

    Chapter  Google Scholar 

  • Tinti S, Bertolucci E, Romagnoli R (1999) Modeling a possible Holocenic landslide-induced tsunami at Stromboli volcano. Phys Chem Earth 24(5):423–429

    Article  Google Scholar 

  • Tinti S, Maramai A, Armigliato A, Graziani L, Manucci A, Pagnoni G, Zaniboni F (2006) Observations of physical effects from tsunamis of December 30, 2002 at Stromboli volcano, southern Italy. Bull Volcano 68(5):450–461

    Article  Google Scholar 

  • Titov VV, Synolakis CE (1998) Numerical modeling of tidal wave runup. J Waterw Port Coast Ocean Eng 124(4):157–171

    Article  Google Scholar 

  • Wang X (2009) User manual for COMCOT version 1.7 (first draft), Cornel University, pp 65

    Google Scholar 

  • Watts P (1998) Wavemaker curves for tsunamis generated by underwater landslides. J Waterw Port Coast Ocean Eng 124(3):127–137

    Article  Google Scholar 

  • Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3(5):391–402

    Article  Google Scholar 

  • Watts P, Grilli ST, Tappin D, Fryer GJ (2005) Tsunami generation by submarine mass failure. II: predictive equations and case studies. J Waterw Port Coast Ocean Eng 131(6):298–310

    Article  Google Scholar 

  • Weiss R, Wunnemann K, Bahlburg H (2006) Numerical modelling of generation, propagation and run-up of tsunamis caused by oceanic impacts: model strategy and technical solutions. Geophys J Int 167:77–88

    Article  Google Scholar 

  • Weiss R, Krastel S, Anasetti A, Wuennemann K (2013) Constraining the characteristics of tsunami waves from deformable submarine landslides. Geophys J Int. doi:10.1093/gji/ggt094. http://gji.oxfordjournals.org/content/early/2013/04/05/gji.ggt094

  • Yalçıner AC, Alpar B, Altınok Y, Özbay İ, Imamura F (2002) Tsunamis in the Sea of Marmara: historical documents for the past, models for the future. Mar Geol 190(1):445–463

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Alexander von Humboldt Foundation in Germany. The first author is grateful to Prof. Kenji Satake (University of Tokyo, Japan) for his supports and fruitful discussions. This manuscript benefited from detailed and constructive reviews by Dr. Carl B. Harbitz (Norwegian Geotechnical Institute, Norway), Prof. Costas E. Synolakis (University of Southern California, USA) and Dr. Anawat Suppasri (Tohoku University, Japan) for which we are sincerely grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Heidarzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heidarzadeh, M., Krastel, S., Yalciner, A.C. (2014). The State-of-the-Art Numerical Tools for Modeling Landslide Tsunamis: A Short Review. In: Krastel, S., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-00972-8_43

Download citation

Publish with us

Policies and ethics