Skip to main content

Robust Registration of Kinect Range Data for Sensor Motion Estimation

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 226)

Abstract

This work concerns the problem of determining the rototranslation between two 3D data sets. The sensor being used is Kinect, which yields large amount of data, thus processing all the point clouds in real-time on a standard PC is impossible. Therefore we analyse and compare two approaches: the standard ICP algorithm, and a method that uses salient point features to reduce the amount of data. To obtain a range data registration procedure, which is both precise and robust to large displacements of the sensor we combine these two methods.

Keywords

  • Point Cloud
  • Mobile Robot
  • Iterative Close Point
  • Iterative Close Point
  • Kinect Sensor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-00969-8_82
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-00969-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Trans. on Pattern Analysis and Machine Intell. 14(2), 239–256 (1992)

    CrossRef  Google Scholar 

  2. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An Evaluation of the RGB-D SLAM System. In: Proc. IEEE Int. Conf. on Robot. and Automat., pp. 1691–1696. St. Paul (2012)

    Google Scholar 

  3. Fallon, M., Johannsson, H., Brookshire, J., Teller, S., Leonard, J.: Sensor Fusion for Flexible Human-Portable Building-Scale Mapping. In: Proc. IEEE/RSJ Int. Conf. on Intell. Robots and Systems, Vilamoura, pp. 4405–4412 (2012)

    Google Scholar 

  4. Fraundorfer, F., Scaramuzza, D.: Visual Odometry: Part II - Matching, Robustness and Applications. IEEE Robotics and Automation Magazine 19(2), 78–90 (2012)

    CrossRef  Google Scholar 

  5. Izadi, S.: KinectFusion: Real-Time 3D Reconstruction and Interaction Using a Moving Depth Camera. In: ACM Symp. on User Interface Software and Technology, New York, pp. 559–568 (2011)

    Google Scholar 

  6. Kabsch, W.: A Solution of the Best Rotation to Relate Two Sets of Vectors. Acta Crystallographica 32, 922 (1976)

    CrossRef  Google Scholar 

  7. The Kinect Effect – How the World is Using Kinect (2012), http://www.xbox.com/en-GB/kinect/kinect-effect

  8. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)

    CrossRef  Google Scholar 

  9. Nowicki, M., Skrzypczyński, P.: Experimental Verification of a Walking Robot Self-Localization System with the Kinect Sensor, Prace Naukowe Politechniki Warszawskiej – Elektronika. Postȩpy robotyki, Warsaw, pp. 561–572 (2012) (in Polish)

    Google Scholar 

  10. Nüchter, N., Feyzabadi, S., Qiu, D., May, S.: SLAM à la Carte – GPGPU for Globally Consistent Scan Matching. In: Proc. 5th European Conf. on Mobile Robots (ECMR), Örebro, pp. 271–276 (2011)

    Google Scholar 

  11. Rusinkiewicz, S., Levoy, M.: Eficient Variants of the ICP Algorithm. In: Proc. 3rd Int. Conf. on 3D Digital Imaging and Modeling, Quebec, pp. 145–152 (2001)

    Google Scholar 

  12. Rusu, R.B., Cousins, S.: 3D is Here: Point Cloud Library (PCL). In: Proc. IEEE Int. Conf. on Robot. and Automat., Shanghai., pp. 1–4 (2011)

    Google Scholar 

  13. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Proc. of Robotics: Science and Systems, Seattle (2009)

    Google Scholar 

  14. Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: Point Feature Extraction on 3D Range Scans Taking Into Account Object Boundaries. In: Proc. IEEE Int. Conf. on Robot. and Automat., Shanghai, pp. 2601–2608 (2011)

    Google Scholar 

  15. Stoyanov, T., Louloudi, A., Andreasson, H., Lilienthal, A.: Comparative Evaluation of Range Sensor Accuracy in Indoor Environments. In: Proc. 5th European Conf. on Mobile Robots (ECMR), Örebro, pp. 19–24 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Nowicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Nowicki, M., Skrzypczyński, P. (2013). Robust Registration of Kinect Range Data for Sensor Motion Estimation. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol 226. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00969-8_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00969-8_82

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00968-1

  • Online ISBN: 978-3-319-00969-8

  • eBook Packages: EngineeringEngineering (R0)