Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 226))

Abstract

This paper presents a new approach to the terrain classification by a hexapod robot using the tactile information. The data was acquired using the force/torque sensor mounted on the walking robot foot. Two types of classifiers were used and compared: the Normal Bayes Classifier (NBC) and the Classification And Regression Tree (CART). The article comprises the description of the experimental setup followed by the presentation of feature selection process and the comparison of the two classifiers’ accuracy. The classification system presented in the article allows the walking robot to recognize the type of the terrain on which it is currently walking on with over 90% accuracy.

K. Walas is funded by the Polish National Science Centre, Grant No. 2011/01/N/ST7/02070.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus (2006)

    Google Scholar 

  2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    MATH  Google Scholar 

  3. Brooks, C., Iagnemma, K.: Vibration-based terrain classification for planetary exploration rovers. IEEE Transactions on Robotics 21(6), 1185–1191 (2005)

    Article  Google Scholar 

  4. Filitchkin, P., Byl, K.: Feature-based terrain classification for LittleDog. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1387–1392 (2012)

    Google Scholar 

  5. Giguère, P., Dudek, G., Saunderson, S., Prahacs, C.: Environment Identification for a Running Robot Using Inertial and Actuator Cues. In: Sukhatme, G.S., Schaal, S., Burgard, W., Fox, D. (eds.) Robotics: Science and Systems. The MIT Press (2006)

    Google Scholar 

  6. Giguere, P., Dudek, G.: Clustering sensor data for autonomous terrain identification using time-dependency. Auton. Robots 26(2-3), 171–186 (2009)

    Article  Google Scholar 

  7. Giguere, P., Dudek, G.: Surface identification using simple contact dynamics for mobile robots. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3301–3306 (May 2009)

    Google Scholar 

  8. Giguere, P., Dudek, G.: A Simple Tactile Probe for Surface Identification by Mobile Robots. IEEE Transactions on Robotics 27(3), 534–544 (2011)

    Article  Google Scholar 

  9. Hoepflinger, M., Remy, C., Hutter, M., Spinello, L., Siegwart, R.: Haptic terrain classification for legged robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2828–2833 (2010)

    Google Scholar 

  10. Hoffman, R., Krotkov, E.: Perception of rugged terrain for a walking robot: true confessions and new directions. In: Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems 1991, Intelligence for Mechanical Systems, IROS 1991, vol. 3, pp. 1505–1510 (November 1991)

    Google Scholar 

  11. Krotkov, E.: Active perception of material and shape by a walking robot. In: Fifth International Conference on Advanced Robotics, 1991, Robots in Unstructured Environments, ICAR 1991, vol. 1, pp. 37–42 (1991)

    Google Scholar 

  12. Ojeda, L., Borenstein, J., Witus, G., Karlsen, R.: Terrain characterization and classification with a mobile robot. Journal of Field Robotics 23(2), 103–122 (2006)

    Article  MATH  Google Scholar 

  13. Posner, I., Cummins, M., Newman, P.: A generative framework for fast urban labeling using spatial and temporal context. Autonomous Robots 26(2-3), 153–170 (2009)

    Article  Google Scholar 

  14. Walas, K., Belter, D.: Messor – versatile walking robot for search and rescue missions. Journal of Automation, Mobile Robotics & Intelligent Systems 5(2), 28–34 (2011)

    MathSciNet  Google Scholar 

  15. Weiss, C., Frohlich, H., Zell, A.: Vibration based Terrain Classification Using Support Vector Machines. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4429–4434 (October 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmidt, A., Walas, K. (2013). The Classification of the Terrain by a Hexapod Robot. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol 226. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00969-8_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00969-8_81

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00968-1

  • Online ISBN: 978-3-319-00969-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics