Cost Sensitive Hierarchical Classifiers for Non-invasive Recognition of Liver Fibrosis Stage

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 226)


Liver Fibrosis caused by the Hepatitis Virus type C (HCV) may be a serious life-threatening condition if is not diagnosed and treated on time. Our previous research proved that it is possible to estimate liver fibrosis stage in patients with diagnosed HCV only using blood tests. The aim of our research is to find a safe and non-invasive but also inexpensive diagnostic method. As not all blood tests are equally expensive (not only in meaning of money, but also time of analysis), this article introduces a Cost Factor to the hierarchical classifiers. Our classifier has been based on a C4.5 decision tree building algorithm enhanced with a modified EG2 algorithm for maintaining a cost limit.


machine learning cost sensitive classification hierarchical classifier decision trees multi-stage pattern recognition medical informatics liver fibrosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bedossa, P., Dargre, D., Paradis, V.: Sampling variability of liver fibrosis in chronic hepatitis. Hepatology 38, 1449–1457 (2003)Google Scholar
  2. 2.
    Bedossa, P., Poynard, T.: An algorithm for the grading of activity in chronic hepatitis. The Metavir Cooperative Study Group 24, 289–293 (1996)Google Scholar
  3. 3.
  4. 4.
    Burduk, R., Zmyślony, M.: Decomposition of classification task with selection of classifiers on the medical diagnosis example. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 569–577. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Castéra, L.: Non invasive assessment of liver fibrosis in chronic hepatitis. Liver International 5(2), 625–634 (2002)Google Scholar
  6. 6.
  7. 7.
  8. 8.
    Krawczyk, B., Woźniak, M., Orczyk, T., Porwik, P., Musialik, J., Blońska-Fajfrowska, B.: Classification techniques for non-invasive recognition of liver fibrosis stage. Journal of Medical Informatics & Technologies 20, 121–127 (2012)Google Scholar
  9. 9.
    Nuenz, M.: The use of background knowledge in decision tree induction. Machine Learning 6, 231–250 (1991)Google Scholar
  10. 10.
    Orczyk, T., Paĺys, M., Porwik, P., Musialik, J., Blońska-Fajfrowska, B.: Simple and non-invasive liver fibrosis stage prediction method. Journal of Medical Informatics & Technologies 17, 227–232 (2011)Google Scholar
  11. 11.
    Penar, W., Woźniak, M.: Cost-sensitive methods of constructing hierarchical classifiers. Expert Systems 27(3), 146–155 (2010)CrossRefGoogle Scholar
  12. 12.
    Podolak, I.T., Roman, A.: Risk function estimation for subproblems in a hierarchical classifier. Pattern Recognition Letters 32(15), 2136–2142 (2011)CrossRefGoogle Scholar
  13. 13.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  14. 14.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann Publishers (1993)Google Scholar
  15. 15.
    Regev, A., Berho, M., Jeffers, L.J., Milikowski, C., Molina, E.G., Pyrsopoulos, N.T., Feng, Z.Z., Reddy, K.R., Schiff, E.R.: Sampling error and intraobserver variation in liver biopsy in patients with chronic hcv infection. The American Journal of Gastroenterology 97(10), 2614–2618 (2002)CrossRefGoogle Scholar
  16. 16.
    Senator, T.E.: Multi-stage classification. In: Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 386–393 (2005)Google Scholar
  17. 17.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008)Google Scholar
  18. 18.
    Ting, K.M.: An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 14(3), 659–665 (2002)CrossRefGoogle Scholar
  19. 19.
    Weiss, Y., Elovici, Y., Rokach, L.: The cash algorithm-cost-sensitive attribute selection using histograms. Information Sciences 222, 247–268 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland
  2. 2.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations