Advertisement

Extended Investigations on Skeleton Graph Matching for Object Recognition

  • Jens Hedrich
  • Cong Yang
  • Christian Feinen
  • Simone Schäfer
  • Dietrich Paulus
  • Marcin Grzegorzek
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 226)

Abstract

Shape similarity estimation of objects is a key component in many computer vision systems. In order to compare two shapes, salient features of a query and target shape are selected and compared with each other, based on a predefined similarity measure. The challenge is to find a meaningful similarity measure that captures most of the original shape properties. One well performing approach called Path Similarity Skeleton Graph Matching has been introduced by Bai and Latecki. Their idea is to represent and match the objects shape by its interior through geodesic paths between skeleton end nodes. Thus it is enabled to robustly match deformable objects. However, insight knowledge about how a similarity measure works is of great importance to understand the matching procedure. In this paper we experimentally evaluate our reimplementation of the Path Similarity Skeleton Graph Matching Algorithm on three 2D shape databases. Furthermore, we outline in detail the strengths and limitations of the described methods. Additionally, we explain how the limitations of the existing algorithm can be overcome.

Keywords

Skeleton Skeleton Graph Graph Matching Shape Recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aslan, C., Tari, S.: An axis-based representation for recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, pp. 1339–1346 (2005)Google Scholar
  2. 2.
    Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1282–1292 (2008)CrossRefGoogle Scholar
  3. 3.
    Bai, X., Latecki, L.J., Liu, W.-Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29, 449–462 (2007)CrossRefGoogle Scholar
  4. 4.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell 24(4), 509–522 (2002)CrossRefGoogle Scholar
  5. 5.
    Fatih Demirci, M., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.J.: Object recognition as many-to-many feature matching. Int. J. Comput. Vision 69, 203–222 (2006)CrossRefGoogle Scholar
  6. 6.
    Fatih Demirci, M., Shokoufandehand, A., Dickinson, S.: Skeletal shape abstraction from examples. IEEE Trans. Pattern Anal. Mach. Intelligence 31(5), 944–952 (2009)CrossRefGoogle Scholar
  7. 7.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  8. 8.
    Klein, P., Srikanta, T., Sharvit, D., Kimia, B.: A tree-edit-distance algorithm for comparing simple, closed shapes. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 696–704. Society for Industrial and Applied Mathematic, Philadelphia (2000)Google Scholar
  9. 9.
    Klein, P.N., Sebastian, T.B., Kimia, B.B.: Shape matching using edit-distance: an implementation. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 781–790. Society for Industrial and Applied Mathematic, Philadelphia (2001)Google Scholar
  10. 10.
    Komala Lakshmi, J., Punithavalli, M.: A survey on skeletons in digital image processing. In: Proceedings of the International Conference on Digital Image Processing, pp. 260–269 (2009)Google Scholar
  11. 11.
    Latecki, L.J., Wang, Q., Koknar-Tezel, S., Megalooikonomou, V.: Optimal subsequence bijection. In: ICDM 2007: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, pp. 565–570. IEEE Computer Society, Washington, DC (2007)Google Scholar
  12. 12.
    Tadeusiewicz, R.: How Intelligent Should Be System for Image Analysis? In: Kwasnicka, H., Jain, L.C. (eds.) Innovations in Intelligent Image Analysis. SCI, pp. VX. Springer, Heidelberg (2011), http://www.springer.com Google Scholar
  13. 13.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40, 99–121 (2000)MATHCrossRefGoogle Scholar
  14. 14.
    Sebastian, T.B., Kimia, B.B.: Curves vs. skeletons in object recognition. Signal Processing 85(2), 247–263 (2005)MATHCrossRefGoogle Scholar
  15. 15.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: IEEE International Conference on Computer Vision, pp. 755–762 (2001)Google Scholar
  16. 16.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(5), 550–571 (2004)CrossRefGoogle Scholar
  17. 17.
    Tadeusiewicz, R.: What does it means ”automatic understanding of the images”? In: Proceedings of the 2007 IEEE International Workshop on Imaging Systems and Techniques, pp. 1–3 (May 2007)Google Scholar
  18. 18.
    Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jens Hedrich
    • 1
  • Cong Yang
    • 2
  • Christian Feinen
    • 2
  • Simone Schäfer
    • 1
  • Dietrich Paulus
    • 1
  • Marcin Grzegorzek
    • 2
  1. 1.University of Koblenz-LandauLandauGermany
  2. 2.University of SiegenSiegenGermany

Personalised recommendations