Advertisement

Fuzzy Cardinalities as a Basis to Cooperative Answering

  • Grégory Smits
  • Olivier Pivert
  • Allel Hadjali
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 497)

Abstract

Cooperative approaches to relational database querying help users retrieve the tuples that are the most relevant with respect to their information needs. In this chapter we propose a unified framework that relies on a fuzzy cardinality-based summary of the database. We show how this summary can be efficiently used to explain failing queries or to revise queries returning a plethoric answer set.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)Google Scholar
  2. 2.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York (1981)Google Scholar
  3. 3.
    Bodenhofer, U., Küng, J.: Fuzzy ordering in flexible query answering systems. Soft Comput. 8, 512–522 (2003)CrossRefGoogle Scholar
  4. 4.
    Bosc, P., Buckles, B., Petry, F., Pivert, O.: Fuzzy databases. In: Bezdek, J., Dubois, D., Prade, H. (eds.): Fuzzy Sets in Approximate Reasoning and Information Systems, pp. 403–468. The Handbook of Fuzzy Sets Series. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  5. 5.
    Bosc, P., Dubois, D., Pivert, O., Prade, H., de Calmès, M.: Fuzzy summarization of data using fuzzy cardinalities. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’02), pp. 1553–1559, Annecy, France (2002)Google Scholar
  6. 6.
    Bosc, P., Hadjali, A., Pivert, O.: Empty versus overabundant answers to flexible relational queries. Fuzzy Sets Syst. 159(12), 1450–1467 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bosc, P., Hadjali, A., Pivert, O.: Incremental controlled relaxation of failing flexible queries. J. Intell. Inform. Syst. 33(3), 261–283 (2009)CrossRefGoogle Scholar
  8. 8.
    Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bosc, P., Pivert, O., Dubois, D., Prade, H.: On fuzzy association rules based on fuzzy cardinalities. In: FUZZ-IEEE, pp. 461–464 (2001)Google Scholar
  10. 10.
    Bosc, P., Pivert, O., Hadjali, A., Smits, G.: Correlation-based query expansion. In: Actes des 26\(^e\) Journées Bases de Données Avancées (2010)Google Scholar
  11. 11.
    Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of database query results. In: Proceedings of VLDB’04, pp. 888–899 (2004)Google Scholar
  12. 12.
    Chomicki, J.: Querying with intrinsic preferences. In: Proceedings of EDBT’02, pp. 34–51 (2002)Google Scholar
  13. 13.
    Corella, F., Lewison, K.: A brief overview of cooperative answering. In: Technical report http://www.pomcor.com/whitepapers/cooperative_responses.pdf (2009)
  14. 14.
    Cuppens, F., Demolombe, R.: Cooperative answering: a methodology to provide intelligent access to databases. In: Proceedings of DEXA’88, pp. 333–353 (1988)Google Scholar
  15. 15.
    Dubois, D., Prade, H.: Fuzzy cardinalities and the modeling of imprecise quantification. Fuzzy Sets Syst. 16, 199–230 (1985)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: Fundamentals of fuzzy sets, volume 7 of The Handbooks of Fuzzy Sets. Kluwer Academic, The Netherlands (2000)Google Scholar
  17. 17.
    Gaasterland, T., Godfrey, P., Minker, J.: Relaxation as a platform for cooperative answering. J. Intell. Inform. Syst. 1(3–4), 296–321 (1992)Google Scholar
  18. 18.
    Godfrey, P.: Minimization in cooperative response to failing database queries. Int. J. Cooperative Inform. Syst. 6(2), 95–149 (1997)CrossRefGoogle Scholar
  19. 19.
    Jannach, D.: Techniques for fast query relaxation in content-based recommender systems. In: Proceedings of KI’06, pp. 49–63 (2006)Google Scholar
  20. 20.
    Kaplan, S.-J.: Cooperative responses from a portable natural language query system. Artif. Intell. 19, 165–187 (1982)CrossRefGoogle Scholar
  21. 21.
    Kiessling, W.: Foundations of preferences in database systems. In: Proceedings of VLDB’02 (2002)Google Scholar
  22. 22.
    Zadeh, L.A.: Fuzzy sets. Inform. Control 8(3), 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    McSherry, D.: Incremental relaxation of unsuccessful queries. In: Proceedings of ECCBR’04, pp. 331–345 (2004)Google Scholar
  24. 24.
    McSherry, D.: Retrieval failure and recovery in recommender systems. Artif. Intell. Rev. 24(3–4), 319–338 (2005)Google Scholar
  25. 25.
    Motro, A.: Cooperative database system. In: Proceedings of FQAS’94, pp. 1–16 (1994)Google Scholar
  26. 26.
    Ozawa, J., Yamada, K.: Cooperative answering with macro expression of a database. In: Proceedings of IPMU’94, pp. 17–22 (1994)Google Scholar
  27. 27.
    Ozawa, J., Yamada, K.: Discovery of global knowledge in database for cooperative answering. In: Proceedings of Fuzz-IEEE’95, pp. 849–852 (1995)Google Scholar
  28. 28.
    Pilarski, D.: Linguistic summarization of databases with quantirius: a reduction algorithm for generated summaries. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 18(3), 305–331 (2010)CrossRefGoogle Scholar
  29. 29.
    Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial College Press, London (2012)Google Scholar
  30. 30.
    Pivert, O., Smits, G., Hadjali, A., Jaudoin, H.: Efficient detection of minimal failing subqueries in a fuzzy querying context. In: Eder, J., Bieliková, M., Tjoa, A.M. (eds.) ADBIS. Lecture Notes in Computer Science, vol. 6909, pp. 243–256. Springer (2011)Google Scholar
  31. 31.
    Ras, R.-W., Dardzinska, A.: Intelligent query answering. In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, 2nd edn, vol. II, pp. 1073–1078. Idea Group, Inc., Hershey (2008)Google Scholar
  32. 32.
    Rasmussen, D., Yager, R.R.: Summary SQL: a fuzzy tool for data mining. Intell. Data Anal. 1(1–4), 49–58 (1997)CrossRefGoogle Scholar
  33. 33.
    Ruspini, E.: A new approach to clustering. Inform. Control 15(1), 22–32 (1969)CrossRefMATHGoogle Scholar
  34. 34.
    Saint-Paul, R., Raschia, G., Mouaddib, N.: General purpose database summarization. In: Proceedings of VLDB’05, pp. 733–744 (2005)Google Scholar
  35. 35.
    Su, W., Wang, J., Huang, Q., Lochovsky, F.: Query result ranking over e-commerce web databases. In: Proceedings of CIKM’06 (2006)Google Scholar
  36. 36.
    Ughetto, L., Voglozin, W.A., Mouaddib, N.: Database querying with personalized vocabulary using data summaries. Fuzzy Sets Syst. 159(15), 2030–2046 (2008)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9, 149–183 (1983)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.IRISA-IUTLannionFrance
  2. 2.IRISA-ENSSATLannionFrance

Personalised recommendations