Skip to main content

Solving SMT Problems with a Costly Decision Procedure by Finding Minimum Satisfying Assignments of Boolean Formulas

  • Conference paper
  • 792 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 496)

Abstract

An SMT-solving procedure can be implemented by using a SAT solver to find a satisfying assignment of the propositional skeleton of the predicate formula and then deciding the feasibility of the assignment using a particular decision procedure. The complexity of the decision procedure depends on the size of the assignment. In case that the runtime of the solving is dominated by the decision procedure it is convenient to find short satisfying assignments in the SAT solving phase. Unfortunately most of the modern state-of-the-art SAT solvers always output a complete assignment of variables for satisfiable formulas even if they can be satisfied by assigning truth values to only a fraction of the variables. In this paper,we first describe an application in the code performance modeling domain, which requires SMT-solving with a costly decision procedure. Then we focus on the problem of finding minimum-size satisfying partial truth assignments. We describe and experimentally evaluate several methods how to solve this problem. These include reduction to partial maximum satisfiability - PMaxSAT, PMinSAT, pseudo-Boolean optimization and iterated SAT solving. We examine the methods experimentally on existing benchmark formulas as well as on a new benchmark set based on the performance modeling scenario.

Keywords

  • Decision Procedure
  • Conjunctive Normal Form
  • Truth Assignment
  • Cardinality Constraint
  • Satisfying Assignment

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-00948-3_15
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-00948-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software using smt solvers instead of sat solvers. International Journal on Software Tools for Technology Transfer (STTT) 11(1), 69–83 (2009)

    CrossRef  Google Scholar 

  2. Bailleux, O.: On the cnf encoding of cardinality constraints and beyond. CoRR abs/1012.3853 (2010)

    Google Scholar 

  3. Bailleux, O.: Boolvar/pb v1.0, a java library for translating pseudo-boolean constraints into cnf formulae. CoRR abs/1103.3954 (2011)

    Google Scholar 

  4. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 236–249. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  5. Bieganowski, J., Karatkevich, A.: Heuristics for thelen’s prime implicant method. Schedae Informaticae 14, 125–125 (2005)

    Google Scholar 

  6. Biere, A.: Precosat home page (2013), http://fmv.jku.at/precosat/

  7. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  8. Brauer, J., King, A., Kriener, J.: Existential quantification as incremental SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  9. Bryant, R.E.: Boolean analysis of mos circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 6(4), 634–649 (1987)

    CrossRef  Google Scholar 

  10. Bulej, L., Bures, T., Horky, V., Keznikl, J., Tuma, P.: Performance Awareness in Component Systems: Vision Paper. In: Proceedings of COMPSAC 2012 (2012)

    Google Scholar 

  11. Bulej, L., Bures, T., Keznikl, J., Koubkova, A., Podzimek, A., Tuma, P.: Capturing performance assumptions using stochastic performance logic. In: Proceedings of ICPE 2012 (2012)

    Google Scholar 

  12. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158 (1971)

    Google Scholar 

  13. Crama, Y., Hammer, P.L.: Boolean Functions - Theory, Algorithms, and Applications. In: Encyclopedia of Mathematics and its Applications, vol. 142. Cambridge University Press (2011)

    Google Scholar 

  14. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. JSAT 2(1-4), 1–26 (2006)

    MATH  Google Scholar 

  15. Heras, F., Morgado, A., Planes, J., Silva, J.P.M.: Iterative sat solving for minimum satisfiability. In: ICTAI, pp. 922–927 (2012)

    Google Scholar 

  16. Hoos, H., Stutzle, T.: Satlib benchmark site (2013), http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

  17. Hoos, H.H., Stutzle, T.: Satlib: An online resource for research on sat, pp. 283–292. IOS Press (2000)

    Google Scholar 

  18. Horky, V.: Stochastic Performance Logic (SPL) Home Page (2013), http://d3s.mff.cuni.cz/projects/performance_evaluation/spl/

  19. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI 1992: Tenth European Conference on Artificial Intelligence, Vienna, Austria, pp. 359–363 (1992)

    Google Scholar 

  20. Kügel, A.: Homepage of Adrian Kügel (2012), http://www.uni-ulm.de/en/in/institute-of-theoretical-computer-science/m/kuegel.html

  21. Manquinho, V.: bsolo home page (2012), http://sat.inesc-id.pt/~vmm/research/index.html

  22. Manquinho, V., Oliveira, A., Marques-Silva, J.: Models and algorithms for computing minimum-size prime implicants. In: Proceedings of the International Workshop on Boolean Problems (1998)

    Google Scholar 

  23. Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: ICTAI, pp. 232–239 (1997)

    Google Scholar 

  24. de Moura, L., Bjørner, N.: Satisfiability modulo theories: An appetizer. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  25. Palopoli, L., Pirri, F., Pizzuti, C.: Algorithms for selective enumeration of prime implicants. Artificial Intelligence 111(1), 41–72 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  26. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press (2001)

    Google Scholar 

  27. Tompkins, D.: Ubcsat home page (2012), http://www.satlib.org/ubcsat/

  28. Umans, C.: The minimum equivalent dnf problem and shortest implicants. In: FOCS, pp. 556–563 (1998)

    Google Scholar 

  29. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and vliw microprocessors. J. Symb. Comput. 35(2), 73–106 (2003)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Babka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Babka, M., Balyo, T., Keznikl, J. (2014). Solving SMT Problems with a Costly Decision Procedure by Finding Minimum Satisfying Assignments of Boolean Formulas. In: Lee, R. (eds) Software Engineering Research, Management and Applications. Studies in Computational Intelligence, vol 496. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00948-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00948-3_15

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00947-6

  • Online ISBN: 978-3-319-00948-3

  • eBook Packages: EngineeringEngineering (R0)